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ABSTRACT

Improvements have been made in the finite element model of the acoustic
radiated field from a turbofan engine inlet in the presence of a mean flow. The
problem of acoustic radiation from a turbofan engine inlet is difficult to model
numerically because of the large domain and high frequencies involved. A numer-
ical model with conventional finite elements in the near field and wave envelope
elements in the far field has been constructed. By employing an irrotational mean
flow assumption, both the mean flow and the acoustic perturbation problem have
been posed in an axisymmetric formulation in terms of the velocity potential,
thereby minimizing computer storage and time requirements. The finite element
mesh has been altered in search of an improved solution. The mean flow prob-
lem has been reformulated with new boundary conditions to make it theoretically
rigorous. The sound source at the fan face has been modeled as a combination
of positive and negative propagating duct eigenfunctions. Therefore, a finite ele-
ment duct eigenvalue problem has been solved on the fan face and the resulting
modal matrix has been used to implement a source boundary condition on the fan
face in the acoustic radiation problem. In the post processing of the solution, the
acoustic pressure has been evaluated at Gauss points inside the elements and the
nodal pressure values have been interpolated from them. This has significantly
improved the results. The effect of the geometric postion of the transition circle
between conventional finite elements and wave envelope elements has been studied
and it has been found that the transition can be made nearer to the inlet than

previously assumed.
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[. INTRODUCTION

A. BACKGROUND

The two predominant sources of noise in a modern jet engine are the jet
noise and the fan noise. While jet noise provides a challenging opportunity for
research involving highly non-linear thermal and turbulence effects, the study of
fan noise has become equally important with the use of high bypass ratio turbofan
engines in civil aircraft. Although the bypass design has considerably reduced the
intensity of jet noise by lowering the jet velocity, there is a significant forward sound
propagation from the fan. This forward radiated acoustic field propagates through
the inlet duct to be radiated to the far field. Therefore the acoustic analysis of this
forward propagating noise involves the noise generation by the fan, propagation
inside the inlet cowling and radiation from the inlet to the far field. This radiated
acoustic field is highly directional in character with its directivity dependent upon
the frequency, the mode of the internally propagated acoustic waves, the inlet
geometry and the mean flow in and around the inlet. The purpose of this work is
to improve the modeling of the far field acoustical radiation from jet engine inlets

in low Mach number flows using the finite element method.

The mathematical modeling of the radiation of turbofan generated noise is
complicated by the fact that the wavelength of sound radiated may be much
smaller than the characteristic dimension of the inlet. To resolve the variation in
acoustic properties near the inlet, it is obvious that a fine mesh must be generated.
Further complications arise from the fact that sound is radiated to an infinite

domain and also because of the presence of a mean flow around the inlet.

The geometries involved in a turbofan engine inlet do not permit a classical

analytical closed form solution, except when extremely simplified assumptions are



made. A wide range of numerical techniques, which have been successfully used
in duct acoustics, can be thought of as an alternative. These include the Finite
Element Method (FEM), the Method of Weighted Residuals (MWR), and the
Finite Difference Method (FDM). Based on previous experience, the FEM showed
promise in the acoustic radiation problem, provided there was a way to model the
infinite domain effectively. Fortunately, there has been much work to date in duct
acoustics which relates to the generation and propagation of noise inside the duct.
The propagation of sound in the external region, which extends from the throat of
the inlet to the far field, presents a more challenging computational problem and
involves the imposition of proper radiation type boundary conditions at a finite
but distant boundary. In this investigation, the radiation boundary condition is

imposed by the use of wave envelope elements in the far field.

B. LITERATURE REVIEW

The theory relevant to this problem spans many fields in acoustics. Rather
than discussing each one of them, this section emphasizes the contribution in the
areas which have a direct link with the problem. Special focus is on duct acoustics

- and the inlet/radiation problem.

In most practical problems concerning the propagation of sound in ducts, no
analytical solution is possible, unless extremely simple geometries and assumptions
are considered. Therefore, the three main numerical techniques which have been
used in analysis are the Finite Element Method (FEM), the Method of Weighted

Residuals (MWR) and the Finite Difference Method (FDM).

Finite element methods have been sucessfully used to model various problems
in duct acoustics. Astley and Eversman (1}, and Eversman, Astley and Thanh (2]

studied area variation in two dimensions and axisymmetric ducts with different



FEM formulations and compared them with MWR results. Majjigi, Sigman and
Zinn 3] used various types of finite elements in the study of simple hard walled
acoustically treated ducts and compared with results produced by a FDM for-
mualtion. Various FEM methods have been used to solve the acoustics problem
with a mean flow. Tag and Lumsdaine [4] used a formulation based on velocity
potential to save disk storage, while Baumeister [5] indicated that the assumption

of irrotational acoustic perturbation is valid only for an irrotational mean flow.

The Method of Weighted Residuals techniques in duct acoustics has been
useful in situations where appropriate basis functions are obtainable such as hard
walled or lined ducts with or without flow. Eversman, Astley and Thanh [2]
compared the results of MWR and FEM methods as mentioned earlier. Eversman
and Astley (6] investigated the accuracy of MWR compared to exact calculations
of acoustic transmission based on a one dimensional model for nonuniform ducts

containing high speed subsonic flow.

Finite difference methods have not been used extensively in acoustics. How-
ever, in non-linear problems, for simplified one dimensional models, it seems to
have a distinct advantage over MWR and FEM. Walkington and Eversman [7]
studied shocked acoustic waves with a one dimensional model using FDM meth-
ods. Walkington [8] proposed several schemes to formulate such problems, but
suggested that extension of the non-linear problem to higher dimensions would be

difficult.

The following discussion highlights previous investigations carried out in the
field of inlet acoustics and the radiation problem. Most work involving inlet acous-
tics has been experimental in nature, however recently some numerical compar-
isons have been made. Ville and Silcox [9], and Silcox [10] presented experimental

results for some standard inlets used by NASA for different flow and geometry



configurations. Several analytical and numerical methods have been proposed to
solve the inlet acoustics problem. Ray acoustics theory (for example Kempton and
Smith {11}) has been combined with numerical flow solutions to analyze various
inlet geometries. Meyer, Bell and Zinn [12] considered inlet shape and liner de-
sign by computing far field directivities by an integral method. They numerically
solved a Helmholtz equation and made an effort not to decouple the far field and
inlet solutions. Meyer, Daniel and Zinn [13] used the same method as described in
reference [12| and gave comparisons with experimental results for radiation from
a pipe and a jet engine inlet. For further improvement, Horowitz, Sigman and
Zinn used a hybrid FEM-integral technique for cases without mean flow [14], then
extended this to cases involving mean flow [15]. The technique uses a FEM for-
mulation to analyse the duct interior and then an integral formulation for the far
field. By guessing a duct exit impedance and solving a duct problem, the far field
radiation is solved using a Green’s function. The outer boundary impedance is
then compared to a Sommerfeld condition and the exit impedance is corrected
iteratively until the results converge. Baumeister [16] used these methods to com-
pare with experimental data for a JT15D engine under static conditions with a

low Mach number flow into the inlet.

The iterative procedure proposed by Zinn et al. turns out to be lengthy and
costly in terms of both computational time and storage. To overcome this problem,
Astley and Eversman [17] employed FEM, wave envelope and infinite element for-
mulations, and succesfully modeled the sound field for a one dimensional test case
with no flow. The concept of infinite elements, where the element shape functions
simulate decay to model an infinite domain, was first proposed by Bettess [18] in
1977. The application of infinite elements to wave propagation was significant,

but Astley and Eversman found that “wave envelope” elements, which simulate



wavelike behavior in their interpolation functions, model far field acoustic radia-
tion better than infinite elements. In [19] they laid the foundation for using wave
envelope elements for inlet radiation in the presence of a flow. They emphasized
that the use of wave envelope elements relies on the assumption that in the far
field the sound field approximates that produced by a point source. This allows
for a coarse mesh in the far field thereby drastically reducing the computational
time and storage requirements. Astley [20] then validated the concept with simple

test cases.

This work is an extension to that done by Eversman, Parrett, Preisser and
Silcox [21], where they have presented several contributions to finite element mod-
elling of acoustic radiation from turbofan inlets. This included the use of a tech-
nique combining finite elements in the near field and wave envelope elements in
the far field. The use of a frontal solution scheme of Irons [22] resulting in dras-
tic reduction of in-core storage was also significant. The numerical results were

verified by comparison with both model scale {10] and full scale [23] test data.

C. ENHANCEMENTS OF THE TURBOFAN FINITE ELEMENT MODEL

The finite element model of the jet engine inlet developed in [21] had some
shortcomings which have been addressed in this study. The finite element mesh
of the original model had elements whose aspect ratios! were not properly main-
tained. The zone of conventional finite elements outside of the nacelle was orig-
inally generated in two adjacent regions. This was found to be superfluous and
was therefore reduced to a single region. In this single region, conventional eight-

node isoparametric finite elements were generated with their radial thicknesses

! Aspect ratio of a two dimensional finite element is the ratio of any two adjacent sides of an
element. Rule of thumb says that it should not be more than 4:1 to be on the safe side.



increasing in geometric progression, thereby maintaining aspect ratios of the ele-

ments below the safe allowable value.

The time invariant mean flow problem of the model has a Laplace’s differential
equation with Neumann boundary conditions and the previous solution technique
to this problem was not theoretically rigorous. The boundary conditions of the
problem have been modified and a proper solution technique has been incorpo-

rated.

A finite element duct eigenvalue problem has been solved on the fan face mesh
and the resulting finite element modal matrix has been used to model the acoustic
potential at the fan face boundary as a combination of incident and reflected
uniform duct eigenfunctions. This boundary condition has been implemented in

the acoustic radiation problem.

The problem has been set up with both eight and nine-node quadratic isopara-
metric elements and results from both the cases have been compared. In the post-
processing of the solution, the acoustic pressure was observed to be discontinuous
across inter-element boundaries. This is expected because it can be shown that
the acoustic potential solution is continuous across inter-element boundaries, but
its derivative is not. In the original model, the acoustic pressure at a node was
calculated from the four elements sharing that node and the value of the pressure
at that node was defined as the average of the these four values. This technique
gave inadequate results. The improved model evaluates acoustic pressure at gauss
points inside the element and interpolates the pressure from the interior points to

the nodes. This has resulted in significantly better results.

The position of the transition circle, which separates the conventional finite

element region in the near field and the wave envelope region in the far field, was



seen to be creating a significant effect on the final results. It was found out that
the wave envelope elements were not only capable of modeling the far field but
also the moderately near field outside the nacelle. Therefore, the transition circle
could be brought in much closer to the inlet than thought before, and this has
lead to better results with drastic reduction in the number of degrees of freedom.

This is probably the most significant result of this study.



II. THEORETICAL FOUNDATIONS

A. THE PROBLEM

The problem posed here is that of a stationary turbofan inlet with internal
and external mean flow. The results obtained are applicable for an observer fixed
to the inlet. For an observer on the ground, Doppler shift corrections have to be

applied to obtain the proper results.

The turbofan inlet is assumed to be axially symmetric, as is the flow field in
and around the inlet. The acoustic field generated within the inlet and radiated
to the far field is generally not axially symmetric, but is conveniently expressed in
terms of Fourier components in the angular coordinate. Therefore, it is appropriate
to express the inlet geometry and the entire computational domain in a cylindrical

coordinate system.

Figure 1 shows the top half of the symmetric inlet geometry in an z-r plane.
The surface C,, is the nacelle. The nacelle is regarded impervious to both steady
flow and acoustic perturbations. The surface C; (fan plane) is the one on which
the sound source, i.e. the turbofan, is defined (it may or may not have a center-
body). The acoustic pressure field on the fan face is modelled as a combination of
incident and reflected (positive and negative) uniform duct eigenfunctions. The
surface C, (baffle surface) is a boundary of the computational region which for
a completely accurate representation would be the negative z-axis. However, in
order to decrease the size of the domain, and also to avoid modeling the rear of the
engine, C, is chosen at least 90° past the direction of maximum acoustic radiation.
It may be thought of as a baffle which would admit flow through, yet interfere
with the forward radiated acoustic field minimally. The boundary Ce is the outer

boundary of the computational domain in the far field such that at points on Cg
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the acoustic field can be viewed locally as propagating plane waves. Thus the com-
putational domain is made finite by imposition of a suitable radiation boundary
condition at a distant but finite boundary. The boundary C, should be several
duct radii from the inlet. The large domain and the fine mesh near the inlet gives
rise to very large number of degrees of freedom in the finite element model. The

boundary conditions will be dealt with in more detail in a later section.

To minimize the problem of huge data storage, an axisymmetric formulation
based on velocity potential has been adopted, thereby reducing the number of un-
knowns to one per node. The assumptions of an inviscid fluid and also that of an
irrotational flowfield has been made (both in steady flow and acoustic perturba-
tions). The mean flowfield is assumed to be steady, uniform, of low Mach number
and parallel to the centerline of the engine. These assumptions are quite valid for

a jet engine during take off or landing approaches.

B. THE FIELD EQUATIONS

This sub-section outlines the derivation of the steady mean flow and acoustic
field equations. It is assumed that the medium is inviscid and non heat conducting
and that all the processes are isentropic. The field equations have been derived in
non-dimensional form. Reference density p, and reference speed of sound c, are
defined at a large distance from the inlet. The reference length is taken as the
duct radius R. Pressure is non-dimensionalized by p,c?, density by p,, velocities

and speed of sound by c,, velocity potential by ¢, R and time by R/e,.

The governing equations for the problem may be written in nondimensional

form as

10



Mass conservation :

L 4Ve(pV)=0 1
Momentum conservation :
v’ , , 1.
— 4+ (V e V)V ==V 2
atl +( b ) p' p ( )
Equation of state :
' 1
F = (L) wr (3
v
where ~ is the ratio of specific heats. The non-dimensional speed of sound can be
written as
' ’1p' -
(€)= =00 (4)

C. VELOCITY POTENTIAL FORMULATION

As stated previously, a velocity potential formulation has been proposed to
reduce the computational time and storage requirements. Since the flow field is
assumed to be irrotational, the non-dimensional velocity V' can be related to the

non-dimensional velocity potential 3’ by
V' = Ve (5)

The mass conservation equation (1) in terms of density and velocity potential

becomes

2 Ve(pVd)=0 (6)

If it is assumed that the reference conditions are taken to be stagnation con-
ditions, i.e. [V'| =0, ¢ =1, 8/8t = 0, the momentum equation (2) in terms of
density and velocity potential may be cast as

(€)= 1- (v = 1)[ 5 + 5(V8' s V&) (7

11



or,

P =[1-(1 —1){3—‘I’-+1(V¢>’ ve')}/en (8)

D. LINEARIZED PERTURBED EQUATIONS

It is assumed that the acoustic quantities consist of small perturbations su-

perimposed on a steady mean flow field, so that
O =¢,+¢ (9)

P =po+p (10)

where o subscript denotes the mean flow field variables and the unsubscripted ones

represent the acoustic perturbation variables.

Substitution of equations (9) and (10) in equations (7) and (8) and lineariza-

tion to first order in acoustic perturbations yields
Do = [1 (’7 > )V¢ V¢ ]1/(‘7—1) (11)
p= ~2iG + (V6,0 V) (12
where, ¢2 = p7~! is the local speed of sound in the mean flow.

Similarly, linearization of the mass conservation equation (6) to first order in

acoustic perturbations yields

%-‘t’ + Ve (Vo + 0.V + 0V8,) = 0 (13)

Equation (13) is a linear superposition of the mass conservation equation for
the steady mean flow and the mass conservation equation for the acoustic flow.

For steady mean flow

Ve (p.Ve,) =0 (14)

12



and for acoustic perturbation
dp
o5+ Ve (Ve +oV8.) =0 (15)
Of the field variables, the physical quantity that can be measured for any
comparison between theory and experiment is the acoustic pressure. The acous-
tic pressure is related to the acoustic potential through the linearized isentropic
equation of state? by
p= sl g + (V6,0 V) (16)
Equations (12) and (15) are the basic field equations for the acoustic pertur-
bation flow. Equation (12) can be used to eliminate p in equation (15) to yield
a “generalized wave equation” in ¢. Equation (16) can then be used to find the
acoustic pressure field from the acoustic potential field obtained from a solution

of (15). The velocity potential field of the steady mean flow needs to be computed

using equation (14).

E. THE FINITE ELEMENT MESH AND WAVE ENVELOPE CONCEPT

The problems for both the mean flow and the acoustic perturbation have been
solved on the same mesh using a standard Galerkin finite element procedure. This
sub-section discusses the finite element mesh and introduces the concept of wave

envelope elements, with the next section discussing the mesh generating scheme

in detail.

As shown in Figure 1, the computational region is divided into two major

regions for conveniently constructing the mesh. The curve C, marks the border

2The linearized isentropic equation of state is

p = pc

13



between these two regions. It is important to note that there is a difference in
the physics involved in generating the mesh in these two regions. In the inner
region, inside the curve C,, a conventional finite element mesh based on quadratic
isoparametric rectangles has been used. The mesh spacing in the general direction
of noise propagation should be maintained at 4 to 5 elements per wavelength. The
mesh spacing across the inlet is made fine enough to resolve the transverse modes
present. In the outer region between C, and Cu, a transition occurs between the
fine mesh and elements which are several wavelengths long. These outer layers of

elements are called wave envelope elements.

The major drawback of using a conventional finite element mesh through-
out the whole domain is apparent when dealing with realistic frequencies. The
variations of the shape functions of an eight or nine-node isoparametric element
are quadratic in the local coordinates within each element. Several elements are
therefore required to accurately represent a single wavelength variation of the so-
lution in the radial and angular directions. For realistic frequencies, the typical far
field wavelength of the acoustic field may be several orders of magnitude smaller
than the overall dimension of the domain. This would demand a very fine mesh
in the far field and therefore the number of degrees of freedom would become

prohibitively large.

To reduce the dimensionality of the problem, wave envelope elements have
been used in the outer region as an alternative. It has already been assumed that
Co is sufficiently far away from the inlet so that the radiated field will behave
locally as a plane wave propagating outwards from the origin and normal to Cy.
Therefore, in the outer region, the inlet is assumed to behave as a stationary
complex source in a uniform flow. Hence the acoustic field in the outer region is

assumed to be propagating outward with exponential character e~ ¥(zr)  where

14



n, is the frequency and ¢(z,r) is the phase, being constant on constant phase
surfaces. The form of the constant phase surfaces can be visualized by considering
a simple source in uniform flow (see Figure 2). Note that C, should be at a
distance from the inlet sufficient for the exterior flow field to be uniform. The

constant phase surfaces are found to be

—Mz+ 22+ Br?
= g (17)

where 32 = 1 — M?. They are circles (of radius R.) of the form

Y(z,r)

(x—~ MR.)*+r* =R} (18)
The Mach number M here is the Mach number of the exterior flow.

The shape/basis functions of a typical wave envelope element in the outer
region are modified from the usual quadratic form to incorporate the complex
exponential propagation corresponding to a locally outward travelling wave, and
the reciprocal decay with distance corresponding to a simple source (the velocity
potential field of a simple source varies as 1/r where r is the radial distance from
the origin). Since the gross features of the harmonic and reciprocal decay solu-
tion are incorporated into the shape functions, the elements in the outer region
are required to resolve only the discrepancy between the actual solution and the
implied harmonic and amplitude variations included in the shape functions. As a
result, the wave envelope elements can afford to be several wavelengths long and

the dimensionality of the problem reduces dramatically.

The modified shape function of node j in a wave envelope element is

N; = N,%e"‘"'(“"*") (19)

where,

R = /2 + p*r? (20)

15



and

_Mz+R
¥ = —;—2— (21)

as shown earlier. Here N; is the standard shape function corresponding to the gth
node. The modified shape function of the wave envelope element assumes a value
of unity at its corresponding node and zero at all other nodes, thereby preserving
the fundamental property of basis functions. Since the wave envelope elements
represent the field generated by a simple source in uniform flow, it is expected
that the elements will be bounded by lines of constant phase and acoustic ray

paths from the origin as shown in Figure 3.

16
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Figure 2: Constant phase circles in uniform flow
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Figure 3: Geometry of a wave envelope element
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1II. MESH GENERATION SCHEME

This section discusses the generation of the finite element mesh which plays
a vital role in the formulation of the problem. Both eight-node and nine-node
quadratic isoparametric elements have been used for the analysis. The mesh gen-
eration scheme is more or less the same for both the elements, only the connectivity
and certain other minor parameters need to be altered. Figure 4 shows an eight
and a nine-node parent element with the local numbering of their nodes. For the
convenience of constructing the mesh, the entire computational domain has been
divided into three regions. Figure 5 illustrates the three regions clearly. Region
I occupies the interior of the nacelle, region II extends from outside the inlet to
the boundary C; and region III (the wave envelope region) extends from C; to the

outer boundary Co.

A. REGION |

Due to the complex nature of the acoustic field inside the nacelle, a fine mesh
is generated in order to resolve the variation in acoustic properties. It is separated
from region II by a circle which we shall call the highlight circle. The highlight
circle is drawn from the nacelle tip (also known as the highlight) in such a way
that its center lies at the point of intersection of the z-axis and a line passing

through the tip of the nacelle at 45° with the z-axis (see Figure 6).

The inner surface of the nacelle C, extends from the fan face to the tip of
the nacelle. The centerline of the inlet geometry extends from the intersection of
the centerbody curve with the z-axis and the intersection of the highlight circle
with the z-axis. Three-node quadratic line elements lie along the inner surface of
the nacelle, the centerbody and the centerline. The coordinates of these nodes are

given as input to generate the mesh in region L. The number of input nodes on

18



n
3 13!! oL 3 8 4
nodes 7 7 nodes
X & ¢ s 9® = 'Y
o— —o ] © ©
1 ] 2 1 8 2
eight-node nine—node

Figure 4: Parent element in local coordinates

Figure 5: Mesh generation regions
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the inner surface of the nacelle and on the centerbody and centerline is the same,

to produce a mesh of generally rectangular elements.

The input data file for the mesh generation program is prepared by a cubic
spline interpolation routine. The configuration for each of these curves in the inlet
geometry (i.e. inner surface of the nacelle, centerbody and centerline) is fed into
the interpolation program in the form of discrete data points. The program then
fits a smooth curve through these data points to represent that curve by solving a
tridiagonal system of equations. Convenient nodal points are then chosen on the
interpolated curve at any desired fraction of the total length. The node points on
the centerbody and centerline are generated first. These are followed by the node
points on the inner surface of the nacelle which are at the same fractional distance
from the fan face (fraction based on the curve length) as their corresponding node
points on the centerbody and centerline. This has been done to prevent distortion

in the mesh.

The fan face has also been divided into several elements not necessarily of
equal width, each to be represented by a three-node quadratic line element. Figure
7 illustrates the meshing scheme in this region. The “vertical” element boundaries
inside the nacelle are formed by arcs of circles. These arcs are drawn through
corresponding nodal points on the upper and lower boundaries (for example, the
ffth node on the nacelle inner surface and on the centerbody and centerline,
counted from the fan face) with the center of the circles lying on the z-axis. Such
circles are easily constructed as illustrated by Figure 8. (z1, ¥1) and (z2, y2) are
coordinates of any two corresponding nodal points on the nacelle inner surface and
the centerbody and centerline respectively. Then the z-coordinate of the center

of a circle passing through these two points and having its center on the z-axis is
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the z-axis is given by
(z3 —z}+yi - i)
2(22 - .121)

z, = (22)

circular
arc

! Lo |

| ﬁ’l\e /

\ ‘ | enter 7f circle
/

/
AN
~ _ _~

Figure 8: Geometry of a circular arc in region I

Now, to preserve the rectangular mesh, each of these circular arcs should
have the same numi)er of three noded line elements on them and this should
equal the number of three noded line elements on the fan face. Therefore, each of
these arcs is divided into the same number of elements with the same fractional

length (fraction based on the arc length) as on the fan face. Thus, the nodal
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elements on each of these circular arcs is determined. The nodal coordinates are
stored in a topology array AD(I,J, K) where I is the global element number, J is
the local node number and K = 1 assigns the z coordinate, K = 2 the r coordinate,
respectively, to the array. Proper connectivity relating the local node to its global
numbering is also generated and stored in a connectivity array AN(I,J), where
I = element number, J = local node number. This array stores the global node

number for each node.

The global node numbering goes from top to bottom of each of the circular
arcs (see Figure 9) starting from fan face onwards. The element numbering is also
down each column of elements between adjacent circular arcs and sequenced from

fan face onwards (see Figure 9).

B. REGION II

The mesh in region II becomes polar in nature essentially because of the
configuration of the domain outside the inlet duct. Region II is separated from the
wave envelope region III by a constant phase circle, as described previously, whose
z-intercept is given as input. The constant phase circles are expanding radially
with the local speed of sound (c) and their centers are moving away along the z-
axis with the speed of uniform exterior flow (U) (see Figure 10). This phenomenon
is very similar to the successive circles of outward ripples created on the surface of
still water when a pebble is thrown into it. The only difference is that in still water
the centers of the successive layers of outward moving circular ripples coincide and

here the centers of the constant phase circles move at a constant velocity.

From Figure 10, we obtain the equation of a constant phase circle (of radius

R.) displaced along the positive z-axis with velocity U (positive direction of U is



indicated in Figure 10)
(z-Ut)> +r* = R? (23)

where R, = ct is the radius of the circle Therefore,

R,
(z - UT)2 +r2=R? (24)
or,
(z - MR.)* + r? = R? (25)

where M is the Mach number of the uniform exterior flow®. By setting r =0 in

equation (25) we obtain the z-intercept of the circle
z=(M=%1)R. (26)
The positive sign corresponds to the x-intercept on the positive z-axis,
= (1+M)R,
while the negative z-axis corresponds to the z-intercept on the negative z-axis,
z=—(1- M)R.
The circles can be expressed in polar coordinates R and 6 by,
(Rcosé — MR.)? + (Rsinf)* = R} (27)

Solving for R in terms of 8 yields,

R= Rc[\/i — M? + (Mcosf)? — Mcosb) (28)

Hence, the radial distance R at every angular position @ on the outer boundary of

region II is known.

3Equation 25 is similar to equation 18 in Section IL
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The outer surface of the nacelle (portion of the nacelle surface C, starting from
the baffle C, to the highlight) which forms a part of the inner boundary of region
II has three-node quadratic line elements along it. The input data preparation for
this region is the same as in region I. The configuration of the curve representing
the outer surface of the nacelle is fed into the cubic interpolation routine in the
form of discrete data points. The program then fits a smooth curve through them.
Suitable nodal points are then selected at any arbitrary distance along the curve.
Since the mesh generation in region I precedes that in this region, the coordinates
of the three-node line elements lying along the highlight circle arc are known. The
nodal points on the outer surface of the nacelle and on the highlight circle arc

serve as input for the mesh generation in region II (see Figure 11).

In this region and also in the subsequent region I11, the nodes have been
generated on and along the acoustic rays from origin. Since the mesh is polar,
the angular thickness of the elements increases with radial distance because the
acoustic rays are radial lines diverging from the origin. To maintain proper aspect
ratio of the elements in this region, the radial thickness of the elements should
also increase accordingly along acoustic rays moving away from the origin. Now,
corresponding to each nodal point on the outer nacelle surface and highlight circle
arc, an acoustic ray is defined and its point of intersection with the outer bounding
circle of region I1 is calculated (see Figure 11). Therefore, the radial distance along
that ray in region II is known. This radial distance is then divided according to
the number of elements required along the general direction of noise propagation,
in geometric progression, from the inner boundary to the boundary C,. From
elementary mathematics, we know that if r,72,...,7n are n members of a series in

geometric progression, then the members are related to each other in the following
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way,

rs = cry
rs = CTy

(29)
'm = CTp-i

where c is the common ratio of increment. So, the last member is related to the

first member by

ra=c""'r, (30)

Referring to Figure 12 where an acoustic ray intersects with the two boundaries
of region II, it is obvious that the first and the last members of the geometric
progression series, i.e. intersection points on the inner boundary and the outer
bounding circle C, respectively, are known. Since the number of elements n in the
radial direction of region Il is an input, the common ratio of geometric progression

is found out using equation (30},

1
outer bounding circle) n

common ratio = | - - -
inner bounding circle

Once the common ratio is known, the successive intervals are found out by multi-
plication with the common ratio as in equations (29). Hence, the nodal points of
the line elements along that acoustic ray are located. Geometric progression pro-
vides a gradual increment in the radial thicknesses of elements which is sufficient

to a maintain proper aspect ratio.

The nodal coordinate values are stored in rectangular cartesian form in a
topology array AD(I,J, K) as mentioned before. The connectivity array AN(I,J)
is also created . As illustrated in Figure 13, the element numbering in this region,
continues after region I and goes down each column of elements running from the
baffle surface to the z-axis. The global node numbering also goes down each side
of the element columns sequenced from the inner boundary consisting of the upper

surface of the nacelle and highlight circle arc.

29



/ bounding circles

Figure 12: Geometric progression in region II
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Figure 13: Element and node numbering in region II
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C. N

Region III which consists entirely of wave envelope elements is bounded by
the transition boundary C,, the outer boundary C,, the baffle C, and the z-axis.
The wave envelope elements, as discussed before, are large elements bounded by
acoustic rays and constant phase circles. The string of elements between any two
successive constant phase circles is referred to as a wave envelope layer. The input
for mesh generation in this region is the number of wave envelope layers and the
z-intercept of the constant phase circles bounding each layer. Using equations (26)
and (28), the inner and outer radii of the constant phase circles bounding each
such layer is determined. The mean radius of each layer, which is just the average
of the inner and outer radii, is also calculated. Since the mesh generation in region
II is complete at this stage, the three-node line elements (note that a three-node
line element forms a side of an eight or nine-node isoparametric element) on the
outer bounding circle C, of region II have been located completely and their global
numbering is also known. Therefore, corresponding to each nodal point on C), an
acoustic ray is defined (see Figure 11) and thereby its points of intersection with
the inner, mean and outer radii of each wave envelope layer are calculated. The
rectangular cartesian coordinate values of these intersection points on which the
nodes lie are stored in the topology array AD(I,J, K). The connectivity array
AN(1,J) is similarly calculated as in region II. The element and the global node
numbering follows after region Il and is similar to region II. Since the mesh in
region II is quite fine and that in region III is coarse, care should be taken to make

a gradual transition in the size of the elements.

After the mesh is generated, a connectivity check is performed to ensure a
proper connection between local and global numbering of nodes and uniqueness

of nodal coordinate values.
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D. IDENTIFICATION OF THE BOUNDARY ELEMENTS

Identification of the boundary elements is necessary for proper imposition of
boundary conditions in the finite element calculations. After the mesh is con-
structed in the whole domain, the topology (i.e. nodal coordinate) array and the
nodal connectivity array for the line elements on each of the boundaries of the
domain are calculated separately. An element identification array N ETYPE is

set up and different values are assigned to it for different boundary elements for

identification purposes.

The setting up of topology and nodal coordinate arrays for each boundary
surface is accomplished in several subroutines. The nodal connectivity array for a
boundary is ANL(I,J), where I = element number from 1 to the number of line
elements along that boundary, and J = the local node number in a quadratic line
element. This array defines the global node number of the corresponding node on
that boundary. The topology array is ADL(I,J, K ), where I and J are the same
as above and K = 1 defines the global z-coordinate value of the node, whereas

K = 2 defines the r-coordinate value of the node.

An input and output data description for the mesh generation program has

been described in the appendix.

E. SOME COMMENTS ABOUT THE FINITE ELEMENT MESH

The acoustic radiation problem is highly mesh dependent but the mean flow
problem is not very sensitive to the mesh parameters. Since both of these problems
have been solved on the same finite element mesh, a mesh conforming to the
acoustic parameters is desired. One of the important factors governing the mesh

is the number of elements per wavelength which must always be maintained above
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a minimum value in the main direction of noise propagation to resolve the fine
variation in acoustic properties. According to the rule of thumb the minimum
ratio of the number of elements to the wavelength for quadratic elements should
be 4 or 5. Here a somewhat crude estimate has been made to evaluate that ratio

along the main direction of sound propagation.

Since the nondimensional input frequency n, (it is an input to the problem)
of the sound source on C; is known, we obtain a ratio of the effective wavelength
A, (the wavelength of the sound radiated is altered in the presence of mean flow)

to the reference duct radius R in the following way :

_wR_mE
=T T
since
A.=(1-M)A
therefore,
27R
or,
A, 2nm
= = —(1- 3
= =2(-M) (31)

The Mach number M is positive if directed towards the inlet. Now if the number
of elements per duct radius length is Ng and A is the average width of an element
within that length, then

R

y

Therefore, using equation (31), the ratio of the number of elements per unit duct

radius can be expressed as

n,

Ne = ori—an)

N,., (32)

where N, (= A./A) is the number of elements per effective wavelength. For a

specified number of elements per effective wavelength (for the elements used here
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N, is the goal), equation (32) can be used to determine the number of elements
per unit of nondimensional length required. This varies as the flow towards the
inlet varies, and would generally be highest within the nacelle near the fan face.The
number of elements in the transverse direction within the nacelle or in the angular
direction in region II is not as critical and is adjusted to maintain the aspect
ratio of the elements. Another very important mesh parameter affecting the final
solution is the geometric position of the outer bounding circle C; (the transition

circle) of region II. This is discussed in a later section.

Since the position of the constant phase circles bordering the wave envelope
layers are user input, care should be maintained to make a gradual transition
from the small conventional finite elements to the relatively large wave envelope
elements. For this, the user should be aware of the radial thickness of the last layer
of conventional elements along C,. Since the radial thicknesses of the elements in
region II have been incremented in geometric progression, the radial thickness of

the last element in region II on the z-axis is
Ar = (c"—c""Y)r,

where ¢ is the common ratio of increment, n is the number of elements radially
in region II and r, is the z-intercept of C,. This information is valuable to the
user for making a smooth transition from region II to III. An example of a finite
element mesh with 3441 elements (52 elements along the z-direction in region I,
40 elements radially in region II and 9 wave envelope layers) and 10624 degrees of
freedom is given in Figures 14, 15, and 16, where Figures 15 and 16 show the mesh
in regions I and II in detail. The transition circle C; starts at a nondimensional
distance of 3.5 from the origin. In region I, a very fine mesh has been generated
in the z-axis direction due to the complexity of the acoustic field. In the direction

of the duct radius the mesh has been made gradually more coarse towards the
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centerbody since the region quite close to the z-axis does not usually fall in the
main direction of sound propagation. Outside the nacelle, in region II, the mesh
is coarser than in region I, but still quite dense in the sector bordered by 30° on
the lower side and 85° on the upper side. This sector usually corresponds to the
main direction of sound propagation at moderate frequencies (for example, 15.0)
and low angular mode numbers (for example, 10). The mesh shown as an example
will be suitable for frequencies upto 15.0. At frequencies higher than 15.0, the
mesh must be refined in the radial direction to satisfy the number of elements per
wavelength criterion. The wave envelope elements in the region IIT allow us to

have a very coarse mesh in the far field.
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IV. UNIFORM DUCT EIGENVALUE PROBLEM

For the radiation problem the eigenvectors representing the acoustic modes in
a uniform duct are used to implement boundary conditions at the fan face. They
are conveniently calculated when the mesh is generated. The formulation of the

eigenvalue/eigenvector problem is discussed in this section.

A. ONE DIMENSIONAL BOUNDARY VALUE PROBLEM

The fan face C, is taken to be at a locally uniform part of the inlet. To specify
the acoustic potential there, a finite element eigenvalue problem has been solved
in the inlet duct on the fan face. The eigenvalues and eigenvectors obtained from
the problem are used later to evaluate the boundary condition at the fan face for

the acoustic radiation problem. The nondimensional acoustic field equation for

111000/ /S S L
r R M r R M
- 771 _
- x x
circular duct annular duct

Figure 17: Duct geometry

the axisymmetric duct with uniform mean flow shown in Figure 17 is

(% + M%)’tb -Vi¢=0 (33)
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where M is the local Mach number of the uniform flow. It is assumed that the
acoustic potential in the case of a harmonic acoustic source on the surface Cy,

with time dependence ™!, has axial and azimuthal variations of the form
¢ = ¢'(r)ei(m¢-m0—k,:) (34)

where n, = wR/c; is the local nondimensional frequency (¢; is the local speed of
sound in the duct), k. is the axial wave number and m is an integer representing

the angular (spinning) mode number*.

Substitution of equation (34) in (33) yields

d r ld r Mk
dd; "5 [ H{a-

Feye — By - ™16 =0 (35)
m r

It is important to note that the Mach number M in the above equation (35) is the

local Mach number at the fan face.
Define
=n;l(1- ‘T) - (=)7] (36)
and substitute in equation (35) to obtain Bessel’s equation

d’¢,  1d¢,

dr=+ dr+( ——)¢ 0 (37)

Since the duct has hard walls, the boundary condition prescribed at the wall
Véen =0 (n is the unit outward normal vector on the duct wall) when inter-

preted in the one dimensional case yields,
e For Circular Duct A circular duct corresponds to the case with no centerbody.

at r =0, ¢, is finite (38a)

4The factor e=™? accounts for the spinning acoustical modes generated by steady blade loading
or by the interaction between the rotor and the exit guide vanes.
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de,

=0
— (38b)

at r = R,

e For Annular Duct An annular duct corresponds to the case with a centerbody.

dér

tr=rg, =0 39
at r=r . (39a)
atr=R % _o (395)
dr
B. FINITE ELEMENT FORMULATION

A standard Galerkin finite element formulation has been used with three-node
quadratic Lagrangian elements. A finite element mesh that fits these elements on
to the fan face has already been dealt with in the previous section. The differen-
tial equation (35) and the boundary conditions (equations (38) and (39)) which
compose the boundary value problem for both the circular and the annular duct,
are approximated by a weak form of the boundary value problem for both the

circular and annular duct.

Let ¥ : 1 — R be a smooth function where, the domain 1 is [0, r,] for
a circular duct and [r,, 7,] for an annular one. Multiplication of the differential

equation (35) with the test function ¥ and integration over the domain yields
¢, 1d¢, m?
e b+ 120 4 (et~ T)gulan = 0

or

m?
: (réﬁ)wdr + / (<2, 2A)q&,z/)rdr =0 (40)

Integration of the first term in equation (40) by parts, yields

ri’ﬁ¢ 2 Lrdr+ [ (2 ™ )énrdr = 0 (41)

dr dr

where |r indicates that the given term is evaluated at the boundary I'. This term

goes is zero for both the circular and annular duct cases.
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After discarding the boundary term in equation (41) and rearranging the rest,

the weak formulation is written as

do, d
/( dd: d—lf+ — ¢, Y)rdr — k%, /d),urdr—o (42)

The following weak problem is posed: find a trial function ¢, : 09— R >
equation (42) holds V smooth ¥ : 1 — R. ¢,(r) and ¥(r) are suitable classes of

functions whose derivatives are square integrable (from H' space).

A Galerkin finite element approximation has been used with three-node La-
grangian quadratic elements. Basis functions Ny, Na, ... , N, are chosen from an
n-dimensional subspace of H'. Hence, the test and trial functions can be finitely
approximated as

¥(r) = eiNi(r) (43)
ée(r) = d; N;(r) (44)

where ¢;’s and d,’s are suitable scalars®.

Substitution of equations (43) and (44) in (41) yields a finite element matrix

formulation of the problem

dN,dN; m?
( f ( =2 —;—;N.-N,) rdrd; — x2, /n N;N;rdrd; = 0 (45)
P L
R v,

K.; and M,, are the 1, j entries of the stiffness [K| and mass [M] matrices respec-

tively.

Non-trivial solutions of equation (45) for the vector d are found if A is an

eigenvalue of the equation

(1K) - \[M)d =

5Since ¢, is being suitably interpolated between the nodes, the d;’s here represent nodal values
of the acoustic potential.
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or

(IM]'[K]-[I)d=0 (46)

Here A = &2, is the transverse eigenvalue for the m' radial mode, {]] is the identity

matrix and d is the vector of nodal values of the acoustic potential.

The calculations of the global stiffness and the mass matrix are carried out
at the elemental level and assembly is accomplished using proper connectivity of

the nodes since,

Ne

(K] =>_[K]
[M] =3 [M]*
where n, is the number of elements in the domain. The element stiffness matrix

[K)* and element mass matrix [M]° are given by

e dN¢ 2
AN 2 T NENY)rdr

dr dr p2 "t

K = n.(
M= N Njrdr

where [ is the integral over the element and N{ is the shape function of the i**

node of an element.

The matrix eigenvalue problem (equation (46)) is then solved using a QR
solver. Since the problem is of first order, all of the transverse eigenvalues A are
real. It is interesting to note that the eigenproblem could have been posed with
the eigenvalue defined as (k:/m). The resultant system would have been of second

order and twice as large as the present one.

The exact analytical solutions to the differential equation (35) are transcen-
dental functions called Bessel functions of the first kind Jm(xm7) and Bessel func-

tions of the second kind Yo (Kkmr) of order m,

é.(r) = Adm(kmr) + BYm(Kmr) (47)
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Bessel functions are oscillating functions whose amplitudes diminish as k,,r
increases, and the Y,,(xmr) become unbounded in the limit as k,,r — 0. Therefore
for the circular duct B = 0 and for the annular one both the constants Aand B
are evaluated by boundary conditions. Application of the boundary conditions on

equation (47) evaluates the transverse eigenvalues Kk from
J! (kmr) =0 (48)
for a circular duct, and
J! (km?) + CY (Kmr) =0 (49)

for an annular duct for the m** radial mode.

C. FORMATION OF MODAL MATRIX

In classical duct acoustics, it is shown that duct modes can be categorized as
propagating (cut on) or non-propagating (cut-off). Roughly speaking, lower order
modes propagate and higher order modes are cut-off. Cut-off modes are those
which carry no acoustic power and are therefore entirely reactive with energy

trapped near the source.

Rearrangement of the terms in equation (36) yields the axial wavenumber &,

explicitly in terms of the frequency n and the transverse eigenvalue x,

o [MEITO T
s = 1- M?

(50)

From equation (50), it is apparent that corresponding to each value of the trans-
verse eigenvalue K, there are two distinct values of the axial wavenumber k., one

representing a positive® (or incident) mode and the other representing a negative

6 A positive mode is a one which propagates or decays in the positive z-direction.



(or reflected) mode. The value of the discriminant in equation (50) determines
whether the mode is propagating or cut-off. When the discriminant is greater than
zero, the mode is cut-on. Since the axial variation of the acoustic potential has
been assumed to be of the form e~**:*, a positive sign in front of the discriminant
indicates a positive propagating mode, whereas a negative sign indicates a mode
propagating in the opposite direction. When the discriminant is less than zero,
it becomes imaginary and the mode is cut-off. The axial wave number for such a

mode becomes

(51)

1-M?

From equation (34) it can be argued that the amplitude of a wave which is cut-off

= [—M:tt\/(l—M )(2=)2 - 1}

varies along the z-axis as e*P2 where 8 is

| 1- M?)(=)? -
s T -

1- M?
Since the amplitude should decay with distance from the source, a negative sign in
front of the discriminant in equation (51) indicates a positive cut-off mode whereas

a positive sign indicates a negative cut-off mode.

The positive and negative duct modes, corresponding to a single transverse
eigenvalue «,, have the same mode shape (i.e. eigenvector). Since the higher
order modes are increasingly cut-off, and do not contribu:te much to the acoustic
propagation, the first few positive and negative modes have been retained in the
modal matrix. The modal matrix is an NDOF x (NPOS + NNEG) matrix where
NPOS is the number of positive modes retained, NNEG is the number of negative
modes retained and NDOF is the number of degrees of freedom in the system.
Each column in the modal matrix corresponds to a mode. All the retained positive
modes have been placed first ordered according to the increasing magnitude of the
eigenvalue followed by the columns which represent negative modes in increasing

order. Figures 18 and 19 show the first five acoustic duct modes of an annular
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duct corresponding to angular mode numbers 10 and 20, respectively. Each mode
shape is a finite element approximation of a combination of Bessel functions of
the first and second kind as given by equation (47). Note that for a duct with no
acoustic lining, the positive and negative propagating mode shapes are the same.
The transverse eigenvalues and the modal matrix resulting from the calculations
are used to impose the boundary condition on the fan face in the acoustic radiation
problem. Details of the imposition of the boundary condition are described in a

later section.

The above eigenproblem calculations have been done in the mesh generation
code because the finite element mesh for the problem is generated along with the
mesh for the whole domain. An input and output data description for it has been

elaborated in the appendix.
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V. TIME INVARIANT MEAN FLOW PROBLEM

A. DERIVATION OF THE FLOW PROBLEMS

Equation (14) describes the steady mean flow around the inlet of the turbofan
engine. In the general case the fluid is compressible and equation (14) is nonlinear.
However, under the assumption of sufficiently low flow Mach number, the flow can
be approximated as an incompressible one, and equation (14) can be approximated
by

V¢, =0 (53)

which is the Laplace equation. The assumption of incompressibility does not
impose any extra restrictions on the acoustic perturbation flow equation (15) of

Section I1.D.

In Figure 1, the curves I in the z-r plane correspond to surfaces in the ax-
isymmetric space around the inlet. The axis of symmetry I', is not a physical
boundary of the domain. In the axisymmetric integral formulation of the prob-
lem, the boundary integral corresponding to this axis (r = 0) vanishes. Therefore,
no boundary condition needs to be specified. The far field boundary Ie is cir-
cular (spherical in axisymmetric space). Though it is several duct radii from the
inlet, the flow effects due to the presence of the inlet cannot be assumed negligi-
ble. The boundary condition on this curve will be discussed later. The nacelle
T, and centerbody T, are impervious to flow. The curve I'; represents the fan
face. The curve ['; representing the baffle is a pseudoboundary that does not exist
physically and corresponds to a porous baffle that admits flow through but affects

the acoustic field to as small an extent as possible.

Since the differential equation (53) is linear, it can be split up into three

different problems, each of which can be solved separately and upon employing
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the method of superposition, the velocity potential of the actual flow field can be

determined. The velocity potential for the mean flow is decomposed as follows:

¢ = du + & (54)

where ¢, is the flow field due to the external uniform flow field only (without the
presence of the inlet) and @, is the flow perturbation due to the presence of the
inlet only. The boundary condition to be applied at the boundaries T and ' is
not clear until and unless we formulate the problem in terms of flow perturbation.
Our aim is to formulate the entire problem in such a way that the fan face and

the external flow velocity do not become dependent on the perturbations; rather

they govern it.

The perturbation velocity potential ¢, is further decomposed into
$p = + &2 (55)

where ¢, is the perturbation potential due to inlet flow alone (fan flow effects
only) and &, is the perturbation potential due to flow to a blank inlet (effect of
the presence of the jet engine inlet in the external uniform flow). Therefore, the

three flow problems may be posed as

1. Problem I This problem represents the perturbation potential field due

to inlet flow alone.

V¢, =0 in Q1 (56a)
V¢IOD=U! on I‘, (56b)
Vé,en=0 onT,and T, (56¢)
Ay d
Vdnon:—ﬁron on I'e (564d)
Vé,en=0 onTl, (56¢)



where U, is the uniform fan face velocity, A; is a constant to be determined, n is
the unit outward normal on the boundary and r is the outward radial vector on the
outer boundary T as shown in Fig.1. It is assumed that on the outer boundary
T, the effect of the flow field is that of a simple source placed at the origin. Hence,
the velocity perturbation at the outer boundary is assumed to be radially directed
inwards and inversely proportional to the square of the radial distance from the
origin?. Therefore the boundary condition (56¢) at the baffie boundary T, which

is a radial ray, is zero and hence it is impervious to flow perturbations.

2. Problem II This problem represents the perturbation potential field due

to a flow to a blank inlet.

V¢, =0 in 0 (57a)
Vé,en=-Vé,en onl, (57b)
Vé,en=-Vé,en onl,and [, (57¢)
v Az
¢,on=-§2-r-n on e (57d)
Véaen=0 onTl, (57e)

where ¢, is the external uniform flow velocity potential, A, is a constant to be
determined and r and n are as mentioned before. Here also the flow at the outer
boundary is assumed to be that of a simple source placed at the origin. The flow
perturbation is assumed to be radially outwards and varying as 1/ R? , where R
is the radial distance from the origin. As a result, the baffle boundary (equation

(57¢)) again becomes impervious to flow perturbations.
3. Problem III The uniform external flow field is generated by

V3¢, =0 inQ (58a)

7The velocity field of a simple source varies as 1/R?.
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Vé,en=U,ien onT, and I, (58b)

where U, is the external uniform flow velocity.

Problems I and II are boundary value problems with Neumann boundary
conditions. Solutions to these problems are non-unique if the value of the unknown
variable is not specified at one point in the domain 1. The problems also have
to satisfy a compatibility criterion which balances the flux of flow across different
boundaries. This criterion fixes the values of the constants A, and A, relative to

the flow parameters and, therefore, they are not arbitrary.

A linear superposition of the problems 1, II and III gives us the overall bound-

ary value problem of the mean flow

V¢, =0 in N (59a)

Vé,en=U; onTly (59b)

Vé,en=0 onTl,and [, (59¢)
de,on=—%ron+%—:ron+Uoion on e (594d)
Vé,en=U,ien onT, (59¢)

The flow perturbation effects of the inlet at the outer boundary are small due
to the distance of the boundary from the inlet. Also it is to be noted that the
perturbation boundary condition at the outer boundary ' for problems I and II
(equations (56d) and (57d)) tend to balance each other. Therefore, under these
conditions the superposed boundary condition (59d) on T can be written ap-
proximately as Vé,en = U,ien. The superposition of the elementary solutions
from problems I, II and IIl is based on the assumption that the outer boundary
condition is imposed at a large distance from the inlet. This effectively makes Uy

and U, independent of each other. For a given value of U,, any value of Uy can be
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chosen once the elementary solutions are available. Variations in U, requires new

potential flow solutions to be computed because the mesh depends on U,.

B. FINJTE ELEMENT FORMULATION

1. Problem I Since the mean flow field is axisymmetric, there is no variation
of flow variables in the angular direction. Therefore, the test and trial functions are
independent of the angular coordinate 8. Let ¢ be a real valued smooth function
defined in the axisymmetric domain {l. Multiplication of the Laplace equation

with the test function ¥ and integration over the domain yields
/n V26,9 d0 =0 (60)
By using Green’s theorem, it is determined that

Lwl.wdn= /S¢V¢, endS (61)

where S denotes surfaces of the axisymmetric volume {l. Since the problem is
independent of 8, the volume integral becomes a surface integral in the z-r plane,

and the surface integral becomes a line integral, so that

/ 0¢, 311’ a¢1 oy

[(GR2E+ 25 ) rds dr—/¢V¢,.mdr (62)

Incorporation of the natural boundary conditions into equation (62) results in the

weak form of the problem

d 0,0
[ a2 B0 g m, [ wrar - [ wgrenrd (69

Therefore the following weak problem may be posed: find ¢, : 0 — R? > equa-
tion (63) holds V smooth ¢ : @ — R It is to be noted that ¢ and i are suitable

classes of functions whose derivatives are square integrable (from the space H').

A standard Galerkin finite element approximation has been used for the ma-

trix formulation. Basis functions Ni, Ni, ..., N, have been chosen from a finite
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dimensional (of dimension n) subspace of H'. Hence, the test and trial functions

can be finitely approximated as
11) = C,’N,’(I,T) (64)

¢1 = d,'N,‘(I,T) (65)

where ¢,’s and d;’s are suitable scalars®. Substitution of equations (64) and (65)

n (63) results in the matrix formulation of the problem

U/ (9N ON; aN‘aN")rdzdr] di=U, [ NerdT -4y [ Nigzr e nrdl
riz N / * -

oz Oz or Or

o, g

Ki; F;

(66)
where K;; is the 1, j entry of the stiffness matrix [K] and F; is the ** entry in the

load vector {F}.

2. Problem II In a procedure similar to that of problem I, the weak form of

problem Il is

a¢l allf a¢1 1
/r/; oz 8:1: Br or ) rdzdr = L‘¢V¢,onrdF+A2 /,.“’/’Ez'r'n"dr (67)

where I' =T, UT, UT, and, ¢ and ¢ are from H.

As in problem I, a standard Galerkin finite element approximation has been

used for the matrix formulation. The matrix formulation of problem II yields

U555

xl

) rd:cdr] d; =

rNV¢.,onrdF+Az/ N——r-nrdl‘ (68)

R

8Since ¢ is being suitably interpolated between the nodes, d,’s here imply nodal values of the
mean flow potential.



where K|, is the 7, j entry of the stiffness matrix [K'] and F is the i** entry in

the load vector {F'}.

Details of the stiffness matrix and load vector calculations are dealt with in the
next sub-section. The constants A; and A; of the problems are found by imposing
the compatibility condition which balances the flux across the boundaries. For
problem I, it balances the flux across the fan face with the flux across the outer

boundary ', i.€.,

1
U,j;_!rdl‘=A1/rw-§;ronrd1‘

or,
Uy Jp, rdl

' T &renrdl

A (69)

For problem II, it balances the flux across the nacelle, centerbody and fan

face with the flux across I', i.e.,

1
Lwo.nrdr:A,/r’E;r.nrdr

or,
frv Vda., en rdl
A = 70
T f_frenrdl (70)
C. FINITE ELEMENT CALCULATIONS

The global stiffness matrices and the global load vectors as defined in equa-
tions (66) and (68), can be written as the composition of the element stiffness
matrices and element load vectors respectively. Therefore, for example, in prob-
lem I, we can write

(K] = 2K
{F} = L{F)
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where n, is the number of elements in the domain. The element stiffness matrix

[K*! and the element load vector {F*} for the problem are given by

AN:AdN; ONfON;
L 13 d
n. 0dr Oz + dr Or )rdzdr

K;,

Ff = U,/ N:rdr—A,/r Nf;%;ronrdl‘
re <

where [ is the surface integral over the domain of the element, fr; and [, are
line integrals along element boundaries on the fan face and the outer boundary

respectively, and N is the shape function of the :** node of the element.

Finite element calculations are done based on a parent element with local
coordinates ¢ and n as shown in Figure 4. The element shape functions 1\./,-‘ corre-
sponding to each node 1 in the parent element are standard functions and therefore

known.

1. Surface Integrals To perform the finite element calculations on a parent

element, an element map is constructed. The transformation under which each
element {1, in the mesh is the image of a fixed parent element under a coordinate

map T, is constructed as

T :z= n§' N (¢, n) (72a)
nodes
T.:r= E r.-IV,-'(g’,n) (720)

i=1

where nodes is the number of nodes on the parent element, and is 8 or 9 depending
on whether it is an eight or nine-node element. The element 0, to which T, maps
the parent element is completely determined by specifying the z, r coordinates

(zi, r;) of all the nodal points of {1.. Element shape functions N¢ (z,r) are simply
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obtained from standard parent element shape functions N’,—‘(g, n) by

Ni(z,r) = Ni(s(z,r),n(z.7)) (73)

The derivatives of shape functions are obtained by the chain rule of differentiation,

oN; _ 2N oc  aNion

Bz = 0 9z T on oz (74a)
8N; _9N;d¢ 8N, dn
Br - 8c ar oy or (745)
According to the element map,
dz " AN
—_—= Ir— 75a
d¢ :szl k d¢ ( )
oz nodes aﬁ:
—_—= z 75b
on * on (756)
dr nodes aﬁz
or e BN
—= ry—— 75d
an kgl k an ( )

By using the above relations (equations (72) through (75)), the element stiff-

ness expression K;; may be expressed as

[ (e rardz= [ 3. 7(s.n) I s, )dsdn (76)

where fn' is the domain integral over the parent element and J(¢, n) is the Jacobian
of the transformation T, given by

oz dr Ozor
J(¢,m) = Scon  Bnoc (77)

A standard 4 x 4 Gaussian quadrature rule has been used to evaluate the integral.
It is important to note that the mean flow calculations have been done both with

and without the wave envelope elements. In one case, no distinction has been

57



made between the elements in regions I and 1I and the elements in region III. All
the regions have isoparametric rectangular finite elements. In another case, shape
functions for the wave envelope elements in region III, differ from the rest in the
mesh due to the fact that they simulate the inverse square decay behaviour as
expected in a field due to a simple source. Mathematically a shape function may

be expressed as

Ny =N (2) | (78)

r
where N¢ is the standard shape function of node ¢ at radius r;,. The results in
both cases were virtually identical for the flow velocity we are concerned with.
For compatibility with the radiation calculations the wave envelope elements were

retained.

2. Boundary Integrals Three-node quadratic line elements lie along the

boundaries and the generation of their topology and their nodal connectivity have
already been discussed in the mesh generation scheme. The calculations of the
line integrals are carried out by integrating along those sides of the parent element
that are mapped onto the sides I'* of the actual element 1, along which natural
boundary conditions are prescribed. For definiteness, it has been assumed that the
side ¢ = 1 has been mapped onto I'“. The line integrals have been parametrized

with respect to 7.

The shape functions used for the line integrals are identical to the standard
shape functions for the three-node Lagrangian line element. Element maps are

created as discussed before and the elemental arc length is found by

dl' = Vdz? + dr?
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or,

oz, or .,
a_n) + (=) dn (79)

dl = 4/( e

b}
where j is the jacobian of the transfornation of n onto the arc length parameter
in the z-r plane. The dot products, Vé, e n for problem I andren for problems
I and II need to be computed at each node on the relevant boundaries to evaluate

the line integrals. Note that the constants A, and A; need to be evaluated before

constructing the load vector.

D. THE SOLUTION PROCEDURE

All of the boundary conditions are of the Neumann type and the differen-
tial equation is the Laplace equation. Hence, there is no unique solution to the
problems unless a reference value of the mean flow velocity is specified at any
point in the domain. This does not affect the results because we are interested in
the derivatives of the potential and not in the absolute values of the mean flow
potential. By penalization, the potential has been made zero at the intersection
of the boundaries T, and I'. This penalization has been made at the elemental
level. When the stiffness matrix of the element which occupies that node at the
intersection of Ty and I'w, is calculated, a very large value (1.0e15) is added to
the diagonal entry in the matrix corresponding to that boundary node. Hence
the velocity potential at that node is forced to zero after solution. The penalized

stiffess matrix for that boundary element looks like the following :

Ko ... Kim .. Kinl
Kml Kmm'*'% Kmn
| Kap ... Kam .- Koo |

where m is the penalized node number (local) and ¢ (1.0e-15) is the penalty param-
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eter. As a check, penalization was carried out at a different point in the domain,
and the solution was found to differ from the previous solution by an arbitrary

constant only.

Since the penalization is carried out at the element level, the stiffess matrix
and the load vector are never stored in assembled form. As each element stiffness
matrix and load vector is formed, it is written down onto disk along with its nodal
connectivity. The frontal solution method of Irons [22] has been used to solve the
algebraic system of equations [K|{¢} = {F}. The principles of this technique are
implied by the Gaussian process of forward elmination and back substitution. The
frontal process alternates between accumulation of element coefficients (assembly)
and elimination. Whenever an element is assembled its nodes are kept in active
storage until their elimination. The active in-core storage at a point of time
depends only on the “frontwidth” (number of active nodes at that time) which is
much smaller than the dimension of the assembled matrix. This drastic reduction
in in-core storage is the most important aspect of this scheme. Details of the

scheme are, however, not discussed here.

E. SUPERPOSITION OF THE SOLUTION FROM THE THREE PROBLEMS

After the solutions to problems I and II are obtained, they are added to the
exterior field velocity potential to obtain the overall mean flow velocity potential of
the flow field. Solution to the problem III is the uniform flow field whose velocity

potential is given by

bu = Uz + C (80)

where C is any arbitrary constant. Problems I and II have been solved by penaliz-
ing the velocity potential at the intersection of C, and Co to be zero. Therefore,

in order to be theoretically rigorous, the uniform flow field velocity potential ¢,



should be penalized to zero at that point before superposing the three solutions.
In this process, the solution vector from the three problems have the same datum
of reference. Hence, the value of the constant C no longer remains arbritary and

is calculated as

C=-Uz, (81)

where z, is the z-coordinate of the penalized node at the intersection of C, and

Coo-

The overall mean flow velocity potential is found out by pointwise addition of

the solution vectors from the three flow problems
¢o = ¢l + ¢2 + ¢u (82)

The solutions to the problems I, II and III have been obtained by an input of unit
velocity at the fan face and in the exterior flow field ie. U, =1 and U, = 1.
Therefore, if the fan face flow Mach number and exterior flow field Mach number

are M, and M, respectively, the superposed solution is found by

b = M]¢l + Mu(¢2 + ¢u) (82)

F. RESULTS AND DISCUSSIONS

The solution to the mean flow problems I and II are the velocity potential
values at the nodes in the finite element mesh. Contours of constant velocity
potential in the field have been plotted in Figures 20 and 21. Figure 20 corresponds
to inlet flow alone (problem I) with a unit velocity on the fan face and Figure
21 corresponds to flow into a blank inlet (problem II) with a unit far field flow
velocity. The contour curves for both the problems are more or less parallel to the

fan face C; inside the nacelle and they form concentric circles outside the inlet.
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The equipotential lines are always orthogonal to the streamlines in a flow field, and
since the velocity on Co is radially directed for problems I and II, the constant
potential curves in the far field are supposed to meet C, tangentially. From
Figures 20 and 21 it is obvious that this condition is satisfied upto a certain angular
distance from the z-axis but at high angles, the contour curves do not quite meet
C., tangentially. This is probably because the finite element mesh for the acoustic
radiation problem is also used for solving the mean flow problem. The mesh in
region III, corresponding to the wave envelope elements for the acoustic radiation
problem, is quite coarse for the mean flow problem. This may lead to slight
numerical inaccuracies in the finite element solution in the far field. However, it is
not of much concern for the present problem because the perturbation potential in
the far field is small. Therefore, when the two flow fields are superposed with the
external uniform mean flow, the effect of the flow perturbation in the superposed
far field is not noticeable. This is apparent from Figure 22 which shows the
equipotential lines in the superposed field with a fan face Mach number of 0.5 and
a uniform far field Mach number of 0.3. It is also to be noted from Figure 22
that on the far field boundary, the flow is almost fully dominated by the external
uniform mean flow. Therefore the comment made at the end of Section V.A, that
the perturbation boundary condition on Co for problems I and II (equations (56d)

and (57d)) balance each other, is very well satisfied.
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VI. ACOUSTIC RADIATION PROBLEM

A. WEAK FORM AND FINITE ELEMENT FORMULATION

The governing equation for the acoustics problem with flow is given by equa-
tion (15) in Section IL.D

o
2+ Ve (p.V8+pV4) =0

where p is given by equation (12) of Section II.D,

¢, being the nondimensional speed of sound in mean flow.

Solutions to the above two equations are desired in the case of a harmonic
source on the fan face C; with time and angular dependence given by eilnrt—mf)
where 5, is the nondimensional input frequency (7, = wR/ec,, w is the input
frequency) and m is the angular mode number. Since a steady state solution is
sought, temporal derivatives of acoustic variables are replaced by 8/9t = in,. To

formulate a weak problem, let us assume that the trial and test functions are of

the form
é(z,r,0,t) = &(z,r)etr™ (83)
Y(z,r,0,t) = (z,r)em) (84)
The fact that the test function is taken to be the complex conjugate of the trial

function is consistent with the definition of the inner product of a complex Hilbert

space.

Multiplication of the governing equation (15) with the test function ¥ and

integration over the domain yields

[ (W5 + ¥V o (V6 +5V8,)|dV =0 (85)



Integration of the divergence term in equation (85) by parts yields
. dp )
Ll‘”ﬁ U (Ve +pV0,) dV = -/Sw(pov¢+ pVé)endS  (86)

where [, and [ are the volume integral and the surface integral respectively in
the three dimensional space in and around the inlet. Since the trial and test
functions have been conveniently chosen, the following weak problem is posed in
the (z, r) domain 0 : find é(z,r) : @ — C? > equation (86) holds ¥V smooth

Y(z,r): 1 — C?2 where

0 . ?
Vol — Ve (0, Ve + V) = inpv— po%mb - puy,,

ot
- pv'/hr —po¢a: wtz —po¢w ww (87)

Here u (= 3¢,/8z) and v (= 8¢,/dr) are the z and r components of the mean
flow velocities in the domain Q. (),; and (), are the derivatives of variables with

respect to r and r in the field.

Substitution of p in the right hand side of equation (87) by equation (12) of

Section II.D yields

d
wa—f — Ve (.Y + pV,) =

2...2
% [("3 - c_o:;_-_'_)¢¢ + inrcou(¢s: 1/J - ¢w9z) + inrcov(¢;r "rl) - ¢ww )

— (€2 = u)re Yoz —(€2 = V1) bor Ve + uV(Drz Yrr +r ¥z )] (88)
It is to be noted that the right hand side of equation (88) has products of the
functions ¢ and ¥ or their derivatives with respect to z and r. Since the functions
are complex conjugates of one another, the exponential terms of ¢ and ¢ as in
equations (83) and (84) cancel out here. Therefore the right hand side of equation
(88) is an expression in coordinates T and r only. The volume integral in the left

hand side of equation (86) reduces to a surface integral over the domain §1 in the
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following way

jg(x,r,ﬁ,t)rdrdrdﬁ = /f(r,r)rdrdrdﬂ
v v
= 27r/l;f(z,r)rdrd1: (89)

Similarly we can take out a factor 27 from the right hand side of equation (86)

and reduce the surface integral to a line integral.

fsh(:z:,r,0,t)rd0ds = /sp(z,r) rdfds

27 '/; p(z,r) rds (90)

where ds is the elemental arc length. The constant factor of 27 therefore cancels

out from both sides in equation (86).

The trial and the test functions ¢ and ¢ respectively are from complex H 1
space. In an analogous procedure to that carried out in Section V.B for the
mean flow problem, the trial and test functions are finitely approximated using
the standard Galerkin method. The resulting finite dimensional subspace of H'
is then constructed. The resulting matrix formulation of the problem yields the

global stiffness matrix expression of the problem

K;; = // h{z,r) rdrdz (90)
where
Po . 3 Com’ .
h(:z:,r) = ‘c—z [(7), - o2 )N.‘Nj + ZU'CGU(N.',, Nj - N.'N,‘,,)
+ inrcav(Nisr NJ - NiNj’r) - (CZ - uz)Nl'iz Nju
- (C: - vz)Nl'w Nj:r + uv(Nis: Njw +Niw Njaz )] (91)
Ni,Na,..., N, are basis functions of the finite n-dimensional subspace of H!.

Conventional eight-node quadratic isoparametric elements have been used to

model the regions I and II and hence the interpolation functions used here were the
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same as those for the mean flow problem. The outer region III has been modeled
with eight-node wave envelope elements. As discussed in Section II.LE, the wave
envelope shape functions are constructed on the assumption that at a sufficiently
large distance from the inlet, the acoustic field approximates that of a point source

placed at the origin and are of the form
Rile.n) = Rils,m) Joemioro=)

where 1/R is the nature of decay in the acoustic field due to a point source and
v is the equation of constant phase surfaces (refer to Section ILE). The wave en-
velope elements are not truly isoparametric in the sense that the element maps
are created using the standard eight-node quadratic shape functions, but the solu-
tion is interpolated inside the element using the modified “wave envelope” shape

functions.

B. ACOUSTIC BOUNDARY CONDITIONS

Equation (86) yields a surface integral of form

/s Y(poVé + pV,) e ndS

which can be transformed to a line integral over the boundaries in the (z,r) domain
as has been discussed before. The significance of the combination of terms in
the integrand is clear because it represents the natural boundary terms which
are generated by the use of the divergence theorem. The following discussion
investigates what form the integrand [¥(p, V¢ + pV¢,) o n] assumes on different

boundaries of the computational domain 2.

1. Far Field Boundary C, On the outer boundary C, in the far field a

Sommerfeld radiation condition has been applied. Since there is no reflection in

the far field this condition assumes that on Co only an outgoing wave exists. In
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fact, the modeling of region 11l with wave envelope elements is complete only when

this radiation boundary condition at the outer boundary is properly implemented.

At C. the acoustic field is assumed to be that of a simple source in uniform
flow and placed at the origin. The potential for a harmonic acoustic monopole

(simple source) in a uniform z-direction flow of Mach number M can be written

as
¢ = %e(‘"""‘“’) (92)
where
A = __.___'l—w (93)
47p,
R = \/z+(1- MY)r? (94)
1
Y = m(—M:+R) (95)
k = ’;’— (96)

f. is the source strength, 5, is the source frequency, g, is the mean flow density
and k is the local wave number. By taking appropriate derivatives of the acoustic

potential ¢ we get

d¢ [ —ik z z
% = oo MR Fz?] ¢ (97)
29 [T T

By expanding the right hand side terms of equation (12), we obtain the following

expression for acoustic density in the field

p= -2 [ik¢ + Méé] (99)
Co Jz

Substituting p in (2, V¢ + pV&,) using equation (99), we obtain

(0.V® + oV ) = po [éé(l -M?) - ikM¢] X + Poiéf (100)
oz or
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where X and T are the unit vectors along the z and r axes respectively. Using
equations (97) and (98), equation (100) can be rearranged to yield

(0,96 + 1V44) = oo [-% - (—1%‘—@] (8) (2% + ) (101)

Therefore, the natural boundary condition at Ce representing the Sommerfeld
radiation condition for a harmonic acoustic monopole in a uniform flow parallel

to the z-axis is

(1-M?)

T ] (¢)(nzz + n,r) (102)

(poV@ + pVe,)on = % [—ik -

where n, and n, are the z and r components of the outward unit normal n on the

outer boundary.

In the far field, the mesh is constructed on the basis of constant phase circles
in uniform flow and acoustic rays from the origin. Hence the outer boundary Coo
as shown in Figure 23 is a constant phase circle. By taking ¥ as constant in

equation (95) we obtain the equation for such a circle to be
(z- My)+r2=9y° (103)

So, a constant phase circle is of radius ¥ and having origin at z = My and r=0.

From Figure 23 it is obvious that

n, = cosf = - MY (104)
Y
n, = sinf = — (105)
- R
thus
2 _ 2
(nez + n,1) = z - Myztr (106)

v

With some algebraic manipulation on the right hand side of equation (106) it can

be shown that

n.z+n,r=R (107)
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Therefore the boundary integral on Co can be expressed as

_ 2
f ¥(p. Ve + pV,) enrds = / Po [—ik - u_)
| PN r

hrds 108
% ] oY (108)
As R becomes large (as it is for the outer boundary Cw), the second term in the
integral becomes negligible with respect to the first and the boundary integral may

be approximated by

/; ¥(p. Vo + pV,)enrds = /;_ —potkoyrds (109)

In the right hand side of the equation (109), the local wave number k(= n./c,) can
be replaced by n, because at Coo, €0 = 1. It is important to note that this form
of the integral assumes a “pc” termination i.e. the wave at Co behaves locally as
a plane wave. Therefore, it will be incorrect to compute the boundary integral
given by equation (109) until and unless the outer boundary Co is quite far away

from the inlet.

In the finite element matrix formulation of the weak problem (86), the bound-

ary integral (109) yields an n x n matrix A given by
Ay = [r ip.kN;N, rds (110)

where n is the number of degrees of freedom (= number of nodes) on the outer
boundary Cs. The outer boundary matrix A is therefore transposed to the left
hand side of the equation (86) and appropriately added to the stiffness matrix
given by equation (90) using the nodal connectivity of the outer boundary line

elements.

2. Baffle Boundary C, Inan attempt to reduce the size of the computational

domain a baffle surface C; has been modeled at an angle a to the z-axis (see
Figure 24) which would allow flow through it but affect the radiated acoustic

field minimally. The baffle C; is swept back far enough from the main direction
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of sound propagation with the hope that it does not interfere with the forward
radiated acoustic field. In the region III of wave envlope elements, the natural
boundary condition given by equation (102) is also valid on C; since it is valid for
arbitrary surface shapes. We now investigate the value of the term (nzz+n,r) on

Ch.

Referring to Figure 24, we observe that the line representing the baffle C, is
a straight line passing through the origin and at an angle a to z-axis. Therefore
its equation is

y(z,r)=r—9z=0 (111)

where 4 = tana is the slope of the line. The outward unit normal n to C; can be

written as
Vy 1
n=-—— = ———(—7X+T 112
Wl = VrE ) 2
Thus
1
(n,:c + n,r) = —\/.1—__;__,7(—'12 + r) = (113)

So the boundary integral vanishes on C, in the wave envelope region. Since the
region II is much smaller than region III, the same approximation has been made
there while computing the boundary integral on C, with the expectation that any
errors induced will be localised and will not contribute significantly to the forward

radiated acoustic field.

3. The Centerline Since the centerline corresponds to r = 0, the boundary

integral on the centerline provides no contribution for the axisymmetric formula-

tion, just as in the mean flow problem.

4. The Nacelle Surface C, and Centerbody The nacelle surface C, and the

centerbody are impervious to both steady mean flow and acoustic perturbations.
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Figure 23: Far field mesh geometry
r
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Figure 24: Baffle geometry
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Therefore

V¢o.n=O

Véen=0

Hence there is no contribution to the boundary integral in equation (86) from the

nacelle surface and the centerbody.

5. The Fan Face The sound source at the fan face C; has been modeled
in terms of the duct mode amplitudes. The boundary C; has been taken to be
at a locally uniform part of the inlet. The acoustic potential field due to it has
been expressed as a combination of incident and reflected (positive and negative)
uniform duct eigenfunctions. The eigenvalues and the eigenvectors from the finite
element duct eigenvalue problem discussed in Section IV have been used to model
the natural boundary condition on the fan face C;. The acoustic potential can be

conveniently written as
N . N _
o= Z e tante,(r) + Zd:;c"""’c,.(r) (114)
n=1 r=1

where ¢* and ¢~ are incident and reflected duct modal amplitudes, kfu is the axial
wavenumber corresponding to positive or negative modes given by equation (50),
N is the number of modes retained in the expansion and en(r) is the continuous
duct eigenfunction corresponding to each retained duct mode. Note that the
eigenfunctions e,(r) are the same for propagation in the positive and negative

direction.

On the fan face boundary the integrand of the boundary integral can be

expressed by using equation (12) as

d R/
(pov¢ + Pv¢o) *nN = —p, [(1 - M}) '5% - ”'Z—M!‘b] (115)
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where M, (= V¢,/c,) is the axially directed local fan face Mach number. Sub-

stitution of equation (114) in (115) yields

N
(0. V6 +pV,)emn = Y in, [(1 - M) kS, + n,M’] ¢ e inTe ()

o

n=1
N M _
+ 5 ip, [(1 - M}) ks, + n—c—’] ¢oe ke, (r)(116)
n=1 [}
where ¢, is the nondimensional local speed of sound in flow at the fan face.

On the fan face (z = 0, z being measured from the fan face) the acoustic

velocity potential can be conveniently expressed in terms of duct mode amplitudes

by substituting z = 0 in equation (114)

(47 )
+
d>={ er(r) ... en(r) al(r) ... en(r) }{ d"f > (117)
1
| &N )
Similarly equation (115) can be rewritten as
{ é-;» 3
d>'+
(PoVé+pVd,)en = i{ ate(r) ... apen(r) aye(r) ... ayen(r) } ﬁ ¢’lf »
[ &~ )
(118)
where
+ AR M!
a, = P [(1 - M!) kz" + 7)'——] (119)
Co
So the boundary integral on the fan face Cy can be cast as
oF
/ ¥(p. Ve + pVd,)enrds = i/ v{a* B} rds (120)
r, r, oz

where

{B} = {es(r)...en(r) er(r)...en(r)} (121)
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a. Forced Input to the Acoustics Problem The input to the acoustic radi-

ation problem has been given in terms of specified values of the incident modal
amplitudes ¢*, the reflected modal amplitudes ¢~ are obtained as a part of the
solution. To be precise, the acoustic pressure amplitudes p; are the inputs and
by using equation (16) in Section IL.D, they are related to the velocity potential

modal amplitudes by

s
pE = —ipomr (1 - U]-r;—") 5 (122)

In order to use a forced input on the fan face Cy, generalized coordinates have
been used on the fan face rather than the nodal values of the velocity potential.
The generalized coordinates used for this problem are the velocity potential modal
amplitudes ¢*. Equation {117) suggests a convenient transformation from the

nodal values of the velocity potential on C; to the generalized coordinates by

én
{8}c, = [M] (123)

¢
where {¢}¢, is a NF x 1 column vector, NF being the number of nodes on the fan
face, and [M] is the NF x 2N transformation matrix (N is the number of incident
modes and the number of incident and reflected modes are the same). Since [M]

is the matrix of acoustic eigenvectors on C;, the modal matrix resulting from the

finite element duct eigenvalue problem serves the purpose.

This transformation is applied element by element on the fan face C;. In each
element on the fan face the boundary nodes (nodes which belong to a fan face
element and lie on the fan face boundary C;) are transformed to the generalized
coordinates but the interior nodes (nodes which belong to a fan face element but

do not lie on the fan face boundary) remain intact. This tranformation is done by

77



creating an element transformation matrix {M|® given by the following relation
éF
{¢) = [M] { ¢: (124)
@i
where {¢}* is the NODE x 1 column vector consisting of nodal values of velocity
potential, NODE being the number of nodes in a fan face element. The column
vector on the right hand side is partitioned so that the first 2N generalized co-
ordinates are the modal amplitudes and the remaining degrees of freedom ¢; are
the velocity potential values of nodes which are interior. Note that the element

transformation matrix [M)* will be different for different fan face elements.

The effect of this transformation is that in the Galerkin formulation of the
problem the element stiffness matrix [K*|, which is basically the integral given by
equation (90) when calculated over an element, corresponding to elements on the
boundary C; are expressed in the generalized coordinates given by the column
vector in the right hand side of equation (124). The transformed fan face element

stiffness matrices (K] are of the form,
[K:) = (M) (K] | M]° (125)

Here |K¢] is a (NODE — NB + 2N) x (NODE - NB + 2N) square matrix,
where N B is the number of fan face nodes belonging to one fan face element. It
is importrant to note that the first 2N generalized coordinates consisting of the
incident and reflected modal amplitudes ¢* are common to all the elements along
the fan face boundary C, but, the remaining degrees of freedom ¢; corresponding

to interior nodes of a fan face element are different for different elements.

b. Finite Element Formulation of the Boundary Integral The boundary in-

tegral on the fan face C; assumes a very convenient form in the Galerkin method
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where the test or the weighting function is the same as the shape function. Under
this condition the boundary integral given by equation (120) assumes the form
b én
rds = i/ {B}"{a* B} rds (126)
Ty

: +
z/;!w{a B) .

én
Now {B} is the row vector consisting of continuous duct eigenfunctions corre-
sponding to each retained duct mode. The information that we have regarding
the duct modes is the finite element modal matrix [M| where each column rep-
resents a duct mode. But such eigenvectors are discrete. We approximate the
continuous duct eigenfunctions by the discrete finite element eigenvectors in the

following way

{B} = {N}[M] (127)

where {N} is the row vector of quadratic basis functions Ny, Na,..., Nnyr corre-
sponding to the finite element duct eigenvalue problem. Substitution of equation
(127) in (126) yields

4

}rds = iM]T ( /r ,{N}T{N} rdr) [o* M] { % } (128)

i [ {(BY'{a*B) {
r, d:

¢
The right hand side of equation (128) is evaluated element by element on the fan
face and each of these element integrals yields a 2N x 2N square matrix [C)® given
by
¢
(C) = i|M]T ( /r ‘{N‘}T{N‘}rdr) [e* 1)’ { } (129)
1 ¢
The matrix [C|* calculated in one fan face element is then appended to its corre-
sponding transformed element stiffness matrix | K¢] given by equation (125). Since
the first 2N generalized coordinates are the ¢*, the matrix [C]® is appended to
the topmost and leftmost 2N x 2N block of [K{]. Thus the non zero boundary

conditions in the problem are introduced through the element stiffness matrices

of the boundary elements.
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C. THE SOLUTION PROCEDURE

The frontal scheme of Irons {22}, adapted for unsymmetric problems, has been

used to solve the algebraic system of equations
¢+
(K]{ ¢~ ;=0 (130)
&
The solution procedure is very similar to that implemented for the mean flow
problem. The first NV generalized coordinates corresponding to ¢* are penalized to
force in the required input values for the acoustic radiation problem in a manner

similar to the mean flow case. Such penalization has been carried out at the

elemental level.

D. RESULTS AND DISCUSSIONS

In this section several example numerical results are presented to demonstrate
the improvements in the finite element model of the acoustic radiated field of the
turbofan inlet. The numerical data that can be validated by experiment is that of
the acoustic pressure in the field. The solution of the acoustic radiation problem
yields the acoustic velocity potential at the nodes of the finite element mesh. The

solution is then post processed to yield the acoustic pressure at the nodes by

p= —polind + (Vo V)] (131)

which is obtained by using equation (16) in Section IL.D. From equation (131)
it is obvious that the z and r derivatives of both the mean flow and acoustic
velocity potential need to be evaluated at the finite element nodes before the
nodal acoustic pressure can be calculated. The differential equations governing
the mean flow and acoustic radiation problem are of second order and therefore

the finite element solution space is from H'. This implies that though the solution



is continuous across interelement boundaries, the derivatives need not necessarily
have the same property. Once the velocity potential at the nodes of an element

are known, the z and r derivatives at any point in the element can be obtained by

9 & ANS
7 = =% (1320)
96 _ & ANS
3 = > ¢ 3, (132b)

i=1

where n, is the number of nodes in an element. Following the above approach,
the value of the T or r derivative at a node (which is shared by more than one
element) might be different when evaluated in the different elements sharing that
node, since the derivative need not be continuous across interelement boundaries.
In the original model, a simple average of the nodal derivatives from different
elements sharing a node was performed to obtain an unique value of the derivative
at that particular node. From Figure 25, it is clear that at node j, which is shared
by all the four elements, the derivative with respect to z is obtained for example,

by
e +0%,: +6%, +04.:
4

bi): =
where ¢% is the derivative with respect to z evaluated at node j within element 1.

Similar calculations are performed to obtain the derivative with respect to r.

Test runs have been made at different combinations of source frequencies and
angular mode numbers for an external uniform flow of Mach number -0.3. Only the
first radial mode, among the incident ones, is present with a unit modal amplitude.
Since the acoustic pressure varies over a large range, sound pressure level contours

have been plotted.

Figures 26 through 31 show the sound pressure level contour plots with the
nodal information obtained by the averaging technique. It is observed that the

contour curves representing the main lobe of radiation in the conventional finite
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Figure 25: A node shared by all the elements in a 4 x 4 mesh

element region II are extremely jagged in nature and do not represent the true
nature of the acoustic field there. But strangely enough, they smoothen out totally
in the wave envelope region III. This is true for low frequencies like 12.0, which is
on the lower side, and also for 20.0 which is on the higher side. Also it is noticed
that this erroneous behavior is more spread out in the field at higher frequencies.
Besides this, spurious reflections from the baffle are also present in the radiated

field especially at high frequencies.

To improve on the results, nine noded quadratic isoparametric elements were
used for the analysis instead of the eight noded ones. The presence of the extra
ninth node at the element center did not provide better results. In fact, the results
when compared with the eight noded ones were almost identical. Therefore, to
reduce the dimensionality® of the problem, the nine noded elements were discarded.

However the analysis is almost the same with both kinds of elements, except the

9The number of degrees of freedom associated with N eight noded elements in the mesh is less
than N nine noded elements by N.
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the nodal connectivity and the coordinate array is generated in a different way

while constructing the finite element mesh.

n
¢ < Sy
X X
- -
¢
X X
G & D

Figure 32: 2 x 2 grid of Gauss points in the parent element

For one dimensional line elements, it can be mathematically proved that the
optimum points in the element for the derivative to be calculated are the ones
corresponding to the standard Gaussian quadrature points in the parent element.
Since these points are internal to an element, the derivatives of the solution cal-
culated there are unique and continuous. Extending this feature to the two di-
mensional case, we seek to develop a scheme for calculating the acoustic pressure
at the interior points of the elements corresponding to a standard 2 x 2 grid of

Gauss points in the parent element (see Figure 32).

The nodal velocity potential solutions (both mean flow and acoustic) are in-

terpolated at the Gauss points in an element using

Bo(ZrrUs) = 3 6 (20,5) (133)

=1

89



o(z5,¥) = Zda. (z,,¥,) (133b)

where (z,,y,) are the coordinates of the map of the Gauss points'? in the element.
The derivatives of the potentials are then taken at the Gauss points by appro-
priately taking the derivatives of the element shape functions at the gauss points
since

ON; :r:,,y,)

2¢ z"y" Z g e del (134a)

aé(zg: yﬂ) Z¢ aN (Iﬂ!yﬂ)

i=1

(134b)

Once the velocity potentials (both mean fiow and acoustic perturbation) and their
derivatives have been calculated at the Gauss point grid inside the element, the
acoustic pressure is evaluated there using equation (130). The sound pressure level
contour plots from the data at the Gauss points give smoother curves and represent
the acoustic radiated field much better. This is reflected in Figures 33 through 35
where the sound pressure level curves have been plotted for the same combinations
of source frequencies and angular mode numbers as in Figures 26 through 31,
but using the data at the Gauss points. Therefore the averaging technique for
evaluating the nodal pressures as mentioned before seems to be quite inadequate
for the acoustic radiation problem especially for higher frequencies. The proper
and theoretically more rigorous way to obtain the nodal acoustic pressures is to
obtain the pressures at the Gauss points and then interpolate the nodal values

from them.

The next part of the study was aimed at investigating the effect of the geo-
metric position of the transition circle C; in the mesh. If the transition circle is

very far away from the inlet, then, at realistic frequencies which are usually the

10Gauss points are actually in the parent element. They are mapped onto corresponding points
in the actual element.



00'09
v9'e9
249
16'0L
SSvL
81’8
cg'le
S¥'se
60'68
€L'C6
9¢£'96
00001

(gp) eunssaid |eAs)

D<o O~ © T O N~

0

052

01 =w'ogl ="l
'sjutod ssnen) ulolj ureWIOp I[OYM Y} Ul SINOJUOD [aAd] ainssald punog :gg andig

X
00°S 0S¢ 000 0S5'¢- 00°G-

059°Z-

LI
T
b

_ m\\,/

uleWOP 8y} U] @insseid Wnupxew 8y} S| gPo0) |8A8| 8duslejal

fl

0S¢

00'S

05,

0001

05¢t

00'Gt

91



0009
99
Le'L9
16°0L
SS¥L
g8l
r4:NY)
Sv's8
6068
€L°26
9€£'96
00001
(gp) einsseid (eAs|

OO Co@M~® WO T MmN~

cﬂ _— E-c.mﬁ — L&u
tsyuiod ssner) UIOI) UTRUIOP J[OYM Y} U] BINOJUOD [3A3] ainssaid punog :pg 2Indiyg

X

0S5°L-

05, 00'S 0S¢ 000 0S5°¢- 00°'G-

uBLIOP 8L U} Binssaid WWXBLW ey} 5} P00} (88| 8UBIB}8)

]

{

0S¢

00'S

0L

0001

A

006Gl

92



00°001
8l'eol
9£'9014
¥5'601
eLeil
16'Sl}
60°641
et
9v'scl
v9'8cl
co’iEl
00'SEl

(gp) einssesd janej

DL O O™~ @B T ON -~

)

SNIpel JINP G'¢ e [ uoljisuel) 07 = w'‘Qoz = ‘b
‘sjutod ssney) WIOI] ulRWOp I[OYM 3Y} Ul SINOJUOD |943] a1nssaid punog :gg aindig

X

052 00'S 052 000 0S5¢- 00'S- 05°2Z-

P—————

L L]

wopeel) jo seaibep 6yEp | pue sjusLIe|d 999 JO Ysaw

Aiepunoq pjey} 1} uo einsseid wu|xew 8y} 5| §POQ | [8AB| 82UB16)8)

}

1

05¢

00°'S

052

000}

0s¢i

00'st

93



higher ones, the number of conventional finite elements radially in region IT has
to be quite large to satisfy the number of elements per wavelength requirement.
If the transition circle can be brought closer to the inlet the number of elements
radially in region II needed to satisfy the number of elements per wavelength re-
quirement will lessen. In such a case, the wave envelope region III becomes larger,
but the number of wave envelope elements in that region does not have to increase
proportionally because these elements have inverse decay and exponential terms in
them to model the field due to a simple source. As the transition circle is brought
closer to the inlet, the number of degrees of freedom associated with the problem
drastically reduces, even at higher frequencies. Theoretically it cannot be brought
very close to the inlet because the field there does not behave as one due to a
harmonic acoustic monopolé in uniform flow. Figures 26 through 35 show sound
pressure level curves with the transition circle C; at 3.5 duct radius from the inlet.
Figures 36 and 37 show sound pressure level contours at 1, = 20.0 and m = 20
with the transition circle at 2.5 duct radius and 1.5 duct radius, respectively, from
the inlet. Comparing the results in Figures 35, 36 and 37 for , = 20.0 and m = 20,
it is very surprising and also encouraging to observe that the the sound pressure
level contours get smoother as the transition circle is brought closer to the inlet,
even as close as 1.5 duct radius from the origin (the z-intercept of the transition
circle is at a nondimensional distance of 1.5 from the origin). Furthermore, a
drastic reduction in the number of degrees of freedom occurs. Figure 35 shows
level curves obtained from a mesh of 4666 elements (14349 dof) while Figures 36
and 37 show the same level curves obtained from meshes having 3441 elements
(10624 dof) and 2461 elements (7644 dof), respectively. As the transition circle is
brought in closer to the inlet the level curves become significantly smoothen along
with the tremendous reduction in the dimensionality of the problem. Even though

the transition circle is close to the inlet, the curves have a smooth reflection free
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transition from the conventional finite element region II to region III. We can infer
from this that though the wave envelope elements are meant for modeling the far
field, their shape functions which have the conventional finite element shape func-
tion expression in addition to the inverse decay and exponential terms, are also
capable of modeling the moderately near field outside the inlet. As the transition
circle is brought in closer, the angular resolution of the conventional finite element
mesh in region II increases. This probably contributes partly to the improvement
in results. However, in an attempt to reduce the dimensionality of the problem, it
will be incorrect to apply the “pc” termination (the Sommerfeld radiation bound-
ary condition) at a boundary quite close to the inlet. Further investigation needs

to be carried out to understand the phenomenon more clearly.

Referring to Section VI.B we notice that the acoustic boundary condition at
the portion of the baffle C, belonging to region II is not properly applied with the
hope that the errors due to it will be localized. But we observe that especially at
higher frequencies and higher angular mode numbers a significant level of sound
is radiated around the lip of the nacelle towards the bafle. The portion of the
baffle in region II does not act as a reflection free boundary and therefore creates
incorrect standing wave patterns near the baffle. Spurious reflections from the
baffle in region II are also observed at lower frequencies, but the intensity is much
less. As the transition circle C, is brought closer to the inlet, the part of the
baffle belonging to region II becomes less and therefore the spurious reflections
reduce significantly in intensity because the part of the baffle belonging to region
IIl is reflection free. The reduction in dimensionality of the problem as well as
improvement in results as the transition circle is brought closer to the inlet are

significant results of this study.
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VII. CONCLUSIONS

Several improvements to the finite element modeling of acoustic radiation

from turbofan engine inlets have been presented. They are enumerated below:

o The finite element mesh has been improved in search of an improved solution. In
particular, the aspect ratios of the conventional finite elements in the moderately
near field (region II) have been maintained, especially in the main direction of
sound propagation. The number of conventional finite element regions outside
the nacelle was reduced to one thereby eliminating superfluous coding and also

obtaining some reduction in the total number of degrees of freedom in the mesh.

o The time invariant mean flow problem has been reformulated with new boundary

conditions and a proper solution technique has been incorporated.

e A finite element duct eigenvalue problem has been solved on the fan face mesh
and the resulting modal matrix and the eigenvalues have been used to incorporate

a source boundary condition on the fan face in the acoustic radiation problem.

e The acoustic velocity potential at the sound source has been modeled as a
combination of the positive and negative propagating duct modes evaluated by
the finite element duct eigenvalue problem. By employing this, a finite element

formulation of the boundary integral on the fan face has been obtained.

e In the post processing of the solution, the acoustic pressure was observed to
be discontinuous across inter-element boundaries. The technique of averaging the
pressures at a node, calculated from each element sharing that node, was found to
give poor results especially at higher frequencies. An improved way of evaluating
the acoustic pressure at the Gaussian quadrature points inside the elements and

then interpolating it to the nodes has significantly improved the results.
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e The geometric position of the transition circle bordering the conventional finite
element region and the wave envelope region was seen to be creating a significant
effect on the results. It was found out that the wave envelope elements were not
only capable of modeling the far field but also the moderately near field outside the
nacelle. Therefore, the transition circle could be brought in much closer to the inlet
than thought before, and this has lead to better results with a drastic reduction
in the number of degrees of freedom. This is probably the most significant result

of this study.

These contributions have been implemented in computer programs which are
capable of predicting the radiation pattern at frequencies which are comparable to
those of actual turbofan engines. With the current version of the computer pro-
grams it is possible to accomodate 21000 degrees of freedom which would predict
the radiation pattern fairly well at quite high frequencies (for example, n, = 35)
provided the transition boundary circle is not very far away from the inlet. Future
work should aim at imposing a proper and accurate boundary condition on the
baffle in the conventional finite element region II in order to make it reflection free.
The phenomenon of improvement in the results as the transition circle is brought
closer to the inlet should be investigated in more detail. The representation of
the sound source in terms of the duct mode amplitudes may not be the best way
to model it. Alternative ways should be investigated and the results should be

compared with experimental data to see which model works best.



APPENDIX A

USER'S MANUA

A. DATA DESCRIPTION OF THE MESH GENERATION CODE

1. Input data The finite element mesh generation code PRATMESH not only

generates the finite element mesh for the problem but also solves the duct eigen-
value problem on the fan face mesh. Therefore the input data descriptions for these
two steps are included together. The program is dimensioned for working with
a maximum of 5000 eight node quadratic isoparametric elements, 21000 nodes,
150 boundary line elements on the combination of upper and lower surface of the
nacelle, 50 boundary line elements on the fan face and 125 boundary line elements
on the far field boundary. The input data file structure has distinct blocks of input
data referred to as cards. Each card begins on a new line and the input data on
the card is formatted. The record length is of a maximum of 80 characters. If the
data format requires more than 80 characters a card is continued on additional

lines. The input variables should be input in the file in the sequence given.

| Card | Variable | Format | Description |

1 NLINU I5 Number of three-node line elements to de-
scribe the upper surface of the nacelle

NLINI IS Number of three-node line elements to de-
scribe the lower surface of the nacelle

NY I5 Number of elements along the duct radius
in region I, which is equal to the number of
three-node line elements on the fan face. The
fan face is the plane z = constant, at which
the input duct modal amplitudes are speci-
fied.
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| Card | Variable | Format | Description

1 NX2 15 Number of elements radially in region II
NWEEL I5 Number of wave envelope layers
NPRINT 15 = 0, do not write nodal coordinate array

= 1, write nodal coordinate array

NDONT I5 = 0, do not write output data file
= 1, write output data file

NCNTR Is = 0, there is no centerbody
= 1, there is a centerbody

NCNTRI1 I5 Sequence number of the first line element on
the centerbody. It is the first element from
the intersection of the centerbody and the
fan face.

NCNTR2 IS Sequence number of the last line element on
the centerbody. It is the element at the in-
tersection of the centerbody and the z-axis.

2 PCNT(I) | 6F10.0 |I = 1, NY; end node locations of the three-
node line elements lying along the fan face.
The node locations are given as fractions of
the fan face width and starting from the in-
tersection of the fan face and the lower sur-
face of the nacelle. The first node therefore
has a zero fractional distance and is not an
input. If there are 5 line elements along the
fan face then a typical input for this array
would be 0.2, 0.4, 0.65, 0.88, 1.00
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| Card l

Variable

[ Format |

Description |

3

ADSHPU(1, J, K)

6F10.0

=1,NLINU;J=1,3;K=1,2

nodal coordinates of the three-node
line elements defining the upper sur-
face of the nacelle. I is the ele-
ment number, J is the local node
number, K = 1 defines z coordinate
value and K = 2 defines r coordinate
value. The elements are sequenced
from the baffie surface to the to the
tip of the nacelle. Each card has the
nodal coordinate information of one
line element. Therefore, the number
of records for this card will be the
number of line elements along the
upper surface of the nacelle

ADSHPI(I, 1, K)

6F10.0

I=1,NLIN;J=1,3 K=1,2
nodal coordinates of the three-node
line elements defining the lower sur-
face of the nacelle. I is the ele-
ment number, J is the local node
number, K = 1 defines z coordinate
value and K = 2 defines r coordinate
value. The elements are sequenced
from the fan face to the tip of the
nacelle. The number of cards will
be the number of line elements along
the lower surface of the nacelle

CBSHPI(], J, K)

6F10.0

I=1,NLIN;J=1,3K=1,2
nodal coordinates of the three-node
line elements defining the center-
body and the centerline of the com-
putational domain. The array is
similar to that in cards 3 and 4 and
so also is the format.The elements
are sequenced from the fan face to
the intersection of the highlight cir-
cle with the z-axis.
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[Card | Variable | Format |

Description

6 R2 F10.0 | z-intercept of the outer bounding circle C; of
region II in multiples of the inlet duct radius
7 RLAYER(I) | 6F10.0 |I =1, NWEEL
z-intercepts of the outer bounding circles of
the wave envelope layers in multiples of the
inlet duct radius
8 MT I5 Angular mode number
NPOS I5 Number of positive modes retained in the
modal matrix
VMACH F10.5 | Freestream flow Mach number outside the

nacelle (positive directed towards the inlet)

2. Output data PRATMESH has two output data files - unit 6 and 20. Data

file 6 is the printed output data file by default and is well documented in itself.

Therefore, it is not described here.The output data file 20 contains all the infor-

mation about the finite element mesh and serves as an input to the finite element

calculations in subsequent codes. The output data file structure, like input file unit

5, has records which are classified under the heading of different cards because of

the varied nature of input parameters. Each card begins on a new line and the

input data is formatted. The record length is of a maximum of 80 characters.
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| Card [ Variable | Format [

Description B

1 NE 110 Number of elements in the domain
NL1 110 Number of three-node line elements to de-
scribe the surface of the nacelle
NL2 110 Number of elements in region I along the
duct radius
NL3 110 Number of elements in region II or region III
in the angular direction
NNX1 110 Number of nodes along z-axis in region I
NNX2 110 Number of nodes radially in region II
NNTHI1 110 Number of nodes in region I along the duct
radius
2 NNTH2 110 Number of nodes in region Il in the angular
direction
NNODE 110 Number of nodes in the domain
NWEEL 110 Number of wave envelope layers
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[Card [ Variable [ Format | Description |
2 NX1 110 Number of elements along z-axis in region I
NX2 110 Number of elements in region II along the
radial direction
NY 110 Number of three-node line elements along
the fan face
3 NY2A 110 Number of three-node line elements along
the upper surface of the nacelle
NY2 110 Number of elements in region II in the angu-
lar direction
NY3 110 Number of elements in region IIl in the an-
gular direction
NCNTR 110 1 or O value deciding the presence or absence
of the centerbody
4 NCNTRI1 110 Sequence number of the first centerbody el-
ement
NCNTR2 110 Sequence number of the last centerbody ele-
ment
NLC 110 Number of centerbody elements
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[Card | Variable | Format | Description B

5 R2 D15.8 | z intercept of the outer bounding circle
C, of region II

6 RLAYER(I) | 4D15.8 | z-intercept of the outer bounding circles
of the wave envelope layers

7 AN(I, J) 7110 Nodal connectivity array for the elements
I = element number, J = local node num-
ber

8 NETYPE(I) 7110 I1=1, NE
identification number of elements

9 AD(I, J, K) | 4D15.8 nodal coordinate/topology array of the el-
ements

I = Element number, J = local node num-
ber, K = z or r coordinte specifier

10 ANLI(], J) 7110 | Nodal connectivity array for the bound-
ary line elements along the nacelle surface

I = line element number, J = local node
number

11 ANL2(1, J) 7110 | Nodal connectivity array for the bound-
ary line elements along the fan face

I = line element number, J = local node
number

12 ANL3(I, J) 7110 | Nodal connectivity array for the bound-
ary line elements along the outer bound-
ing circle Co, of the domain

I = line element number, J = local node
number
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| Card |

Variable

| Format |

Description

13

ANLC(I, J)

7110

Nodal connectivity array for the bound-
ary line elements along the centerbody

= line element number, J = local node
number

14

ADL1(I, J, K)

4D15.8

Nodal coordinate array of the boundary
elements along the nacelle surface

I = element number, J = local node num-
ber, K = z or r coordinate specifier

15

ADL2(I, J, K)

4D15.8

Nodal coordinate array of the boundary
elements along fan face

I = element number, J = local node num-
ber, K = z or r coordinate specifier

16

ADL3(1, J, K)

4D15.8

Nodal coordinate array of the boundary
elements along Cy

I = element number, J = local node num-
ber, K = z or r coordinate specifier

17

ADLC(L, J, K)

4D15.8

Nodal coordinate array of the boundary
elements along centerbody

I = element number, J = local node num-
ber, K = z or r coordinate specifier

18

PCNT(I)

4D15.8

I =1, NNTH1; fractions in which the fan
face has been divided for input nodes (see
input data description)

19

MT

110

Angular mode number
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[Card | Variable [ Format | Description ]

19 NPOS 110 Number of positive modes retained in the
modal matrix

NNEG 110 Number of negative modes retained in the
modal matrix

NVECT 110 Total number of positive and negative
modes retained in the modal matrix

20 VMACH | D15.8 | Freestream flow Mach number outside the
nacelle (positive directed towards the inlet)

21 DD(1,J) | 4D15.8 I1=1, NNTHL;J =1, NVECT
Truncated modal matrix from the finite el-
ement duct eigenvalue problem

22 | VKAP(I) | 4D15.8 |I=1, NPOS

Transverse eigenvalues of the annular duct

B. DATA DESCRIPTION OF THE MEAN FLOW CODE

1. Input data The time invariant mean flow problem on the finite element mesh

is solved in the PRATFLOW code. The mesh information in the output file unit
20 from the PRATMES H program serves as an input to the PRATFLOW code.
The user input for this program is the data file unit 5. It has only one card and
the input data is formatted. The record is a maximum of 80 characters. The input

variables should be input in the file 5 in the sequence as described.
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| Card | Variable | Format |

Description B

1 NTYPE 15 = 1, calculates the mean flow velocity poten-
tial only for flow from infinity into the blank
inlet
= 2, calculates the velocity potential for inlet
flow alone
= 3, calculates both cases sequentially and
writes the solution vector to disk for use by
the superposition program

PRINT1 I5 # 0, beginning row and column of the as-
sembled stiffness matrix to be printed
= 0, do not print

PRINT?2 IS # 0, final row and column of the assembled
stiffness matrix to be printed
= 0, do not print

NPLOT 15 = 0, contour plotting routine bypassed ma-
trix to be printed
= 1, plot contour level curves for the solution
vector

NPRINT I5 = 0, do not print nodal coordinate array
= 1, print nodal coordinate array

2. Output data The output data files from the PRATFLOW code are files -

unit 6 and 21. File 6 is well documented in itself and is not described here. File 21

contains the nodal mean flow velocity potential of problems II and I in that order.

It serves as an input to the PRATV EL program. In addition to the saved files 6

and 21, seven unformatted scratch files - units 1, 2, 4, 8, 15, 16 and 17 are used.

Files 15, 16, 17 are direct access and files 1, 2, 4, 8 are sequential access. Record
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lengths for the direct access files 15, 16, and 17 are 36, 144 and 36 respectively.
The number of records in each direct access file is the number of elements in the

domain.

C. DATA DESCRIPTION OF THE VELOCITY POTENTIAL
SUPERPOSITION CODE

1. Input data Problems I, II and III of the time invariant mean flow problem are

superposed in the PRATV EL program to obtain the mean flow velocity potential
at the nodes. Subsequent calculations to obtain the nodal mean flow velocity is
also carried out in this code. The finite element mesh information in the output
file unit 20 from the PRATM ES H program serves as an input to the PRATVEL
code. The output data file unit 21 from the PRATFLOW code is another source
of input. It contains the nodal values of the velocity potential of problems II and
I of mean flow in that order. The user input for the PRATV EL code is data file
unit 5 which has only one card and the data is formatted. The input variables

should be input in file 5 in the sequence described.

Card | Variable | Format Description
1 VMIN F10.0 | Average compressible inlet Mach number at

fan face (positive directed towards inlet)
based on local speed of sound

CFS F10.0 | Free stream speed of sound, outside the na-
celle

RHOFS F10.0 | Free stream density of air, outside the nacelle
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2. Output data The output data files for the superposition program are files unit

6 and 22. Data file 6 is well documented in itself and hence is not described here.
File 22 serves as an input data file for the acoustic radiation program. It contains
some flow parameter values and the nodal values of the mean flow velocity. The

output data description in file 22 is given below. Each card of data begins on a

new line.
| Card I Variable | Format | Description |
1 VMIN D15.8 | Average compressible inlet Mach number at

fan face (positive directed towards inlet)
based on local speed of sound

CFS D15.8 | Free stream speed of sound outside the na-
celle

RHOFS D15.8 | Free stream density of air outside the nacelle

CSTAG D15.8 | Stagnation speed of sound

2 RHOSTG | D15.8 | Stagnation density

TZERO D15.8 | Stagnation temperature

CF D15.8 | Speed of sound at fan face

RHOF D15.8 | Density at fan face
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[Card [ Variable | Format [ Description ]

3 VOCFS(1, J) | 4D15.8 I=1,2,J = Local node number

Nodal mean flow velocity values, I =1 de-
fines z-velocity and I = 2 defines r-velocity

4 ZvX(I) 2D15.8 | I = Global node number
Nodal mean flow z-component velocity val-
ues

ZVR(I) 2D15.8 | I = Global node number
Nodal mean flow r-component velocity val-
ues

D. DATA DESCRIPTION OF THE ACOUSTIC RADIATION CODE

1. Input data There are two different versions of the acoustic radiation pro-

gram - PRATRADA and PRATRADB. PRATRADA is the version where
the nodal acoustic pressure has been evaluated by an averaging technique while
PRATRADB is the version where the acoustic pressure has been evaluated at the
Gauss points and not at the nodal points. Therefore the postprocessors of the two
versions are different but the finite element calculations are the same. The input
data files for the acoustic radiation program PRATRADA and PRATRADB are
files unit 5, 20 and 22. Data file 20 is the output of PRATMESH and contains
the finite element mesh information. File 22 is the output of PRATV E L described
before. The user input is in data file 5. The input data has been structured into
cards. Each card of data begins on a new line and the input data is formatted.
The acoustic radiation program is capable for running multiple cases. It contains
the data for all the cases with an alphanumeric input separating the data for any

two cases which determines whether the case is to be run or not.
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| Card | Variable | Format |

Description

1 HDR(I) 14A4 I=1,14
Character*4; it is the control for multiple
cases; if HDR(1) = ‘stop’ the program stops
execution and hence it is at the beginning of
the data for each case
2 NSYM 110 = 0, rectangular duct
= 1, circular or annular duct
ETAR F10.5 | Nondimensional! frequency of the sound
source (n, = wR/c,)
w = fan rotational speed in rad/sec
R = reference duct radius at the fan face
¢, = freestream speed of sound outside the
nacelle
3 PRINT1 I5 # 0, Beginning row and column in stiffness
matrices printed
= 0, Beginning row and column in stiffness
matrices not printed
PRINT2 I5 # 0, Final row and column in stiffness ma-
trices printed
= 0, Final row and column in stiffness ma-
trices not printed
NPLOT 15 > 0, level curves for the solution vector plot-
ted
= 0, plotting routine bypassed
NCONT I5 Number of level curves to be plotted

113




[Tard | Variable [ Format |

Description B

3 CMAXO F10.5 | Value of maximum level curve
CMINO F10.5 | Value of minimum level curve

4 ZAl(I) | 6F105 |1 =1, NPOS; complex incident modal am-
plitudes, real and imaginary parts

5 NLINED I5 Number of acoustically lined elements on the
inner surface of nacelle (if NLINED = 0,
there is no lining and lining impedances are
not required)

MBEGIN I5 Element number (counted from fan face
along the inner nacelle surface) on which the
lining begins

6 ZADM(I) | 6F10.5 |I=1, NLINED; admittances in the elements
on the nacelle inner surface (complex val-
ues), real and imaginary parts

2. Output data

and PRATRADB is the file unit 6 which is well document
is not descri
files - units 1, 2, 3, 4, 15, 16 and
and files 1, 2, 3, 4 are sequential access. Record len
15, 16, and 17 are 36, 144 and 36 respectively. The number of re
direct access fi
data for the acoustic pressure evaluate

the elements has been written to file 6. The user may wr

The output file for th

bed here. In addition to the saved files, seven unformatted scratch

17 are used. Files 15, 16, 17 are direct access

le is the number of elements in the domain. In PRATRADB, the
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if he/she wishes to. It may then be used by some convenient plotting package
like TECPLOT to plot the sound pressure levels in the domain. The acoustic
pressure data at the Gauss points is written down element by element. In each
element there are four Gauss points. Therefore, the number of records for the
acoustic pressure data is four times the total number of elements in the domain.

The description of the acoustic pressure data evaluated at Gauss points follows.

Card | Variable Format Description ]
————T_-——__i e——
1 XG(1, J, K) 1X,E14.7 | I = element number; J, K = 1, 2; (J, K)
refers to a particular Gauss point in the 2
x 2 grid; z coordinate of the Gauss point

RG(I, J, K) 2X,E14.7 | I = element number; J, K = 1, 2; (J, K)
refers to a particular Gauss point in the 2
x 2 grid; r coordinate of the Gauss point

PGAU(I, J, K) | 2X,E14.7 [ I = element number; J, K =1, 2; (J, K)
refers to a particular Gauss point in the 2
x 2 grid; acoustic pressure at the Gauss
point

E. DATA DESCRIPTION OF THE CUBIC SPLINE INTERPOLATION
PROGRAM

1. Input data This program is for generating the input data for nacelle and

centerbody geometry. The nacelle and centerbody geometry is generated by a
spline curve fit procedure using z and r coordinates of enough points to define
the shape of the outer nacelle, the inner nacelle, and the center body. Using the
spline information, the surfaces of the nacelle are discretized into line elements

whose end points are defined. The center node of the elements is created from
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the knowledge of the end points. The curve fit is a natural cubic spline. The
cubic spline interpolation program prepares the input data for the mesh generation
program PRATMESH. Details of the scheme have been described in section IIIL

The input data is of free format. Each card of data begins on a new line.

| Card [ Variable | Description |
1 NELU | Number of line elements describing the upper sur-

face of the nacelle; the number of this parameter is
one less than the number of points being input to
represent the surface (see FRACTU(I))

NELC1 | Nuiber of line elements describing the centerbody
between fan face and centerbody tip; the number of
this parameter is one less than the number of points
being input to represent the surface (see FRAC1(I))

NELC2 | Number of line elements describing the centerline
between centerbody tip and intersection of highlight
circle with z-axis; the number of this parameter is
one less than the number of points being input to
represent the surface (see FRAC2(I))

2 XBAF r-coordinate of the intersection of the baffle with
the upper surface of the nacelle

XTIP z-coordinate of the nacelle tip

YTIP r-coordinate of the nacelle tip

XFAN z-coordinate of the fan face
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| Card | Variable | Description

2 XCB z-coordinate of the centerbody tip

3 FRACTU(I) | I = 1, NELU + 1; Fractional distance of the end
nodes of the line elements on the upper nacelle sur-
face sequenced from baffie surface onwards (fraction
based on the entire length of the upper nacelle sur-
face)

4 FRAC1(I) |I =1, NELC1 + 1; Fractional distance of the end
nodes of the line elements on the centerbody se-
quenced from fan face onwards (fraction based on
the entire length of the centerbody)

5 FRAC2(I) |I =1, NELC2 + 1; Fractional distance of the end
nodes of the line elements on the centerline se-
quenced from the centerbody tip to the highlight
circle (fraction is based on this distance along the
centerline)

2. Output data The output of this program are the variables ADSHPU(I, J, K),

ADSHPI(I, J, K), CBSHPI(I, J, K) (see input data description of MESHGEN)
written onto output file unit 7 with the same format as the corresponding data in
input file 5 of MESHGEN. In a typical application, the spline program output
file is imported into data file 5 for MESHGEN. A listing of the program follows.

F._ CUBIC SPLINE INTERPOLATION PROGRAM LISTING .

c******program for generating the input data for nacelle geometry*****

implicit real*8 (a-h,o-z)

dimension xnodu(200),ynodu(200),xnodi(200),ynodi(200),xnodc(200)
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dimension ynodc(200) ,adshpu(100,3,2),adshpi(100,3,2)
dimension adshpc(100,3,2),fractu(ZOO),fracl(100),frac2(100)
xbaf = x coordinate of point where baffle starts
xtip = x coordinate of nacelle tip
ytip = y coordinate of nacelle tip
xfan = x coordinate of fan face
xcb = x coordinate of the end of centerbody
read(5,+) nelu, nelcl, nelc2
nelc = nelcl + nelc2
nodeu = 2snelu + 1
nodec = 2#nelc + 1
nodecl = 2snelcl + 1
nodec2 = 2snelc2 + 1
read(5,+) xbaf, xtip, ytip, xfan, xcb
read(5,*) (fractu(i),i=1,nelu+1)
read(5,#) (fracl(i),i=1,nelcl1+1)
read(5,%) (frac2(i),i=1,nelc2+1)
..... generating x coordinate nodal points on the upper nacelle surface
do 20i = 1, nelu
xnodu(2#i-1) = xbaf + fractu(i)*(xtip - xbaf)
xnodu(2si+1) = xbaf + fractu(i+1)#(xtip - xbaf)
xnodu(2+i) = (xnodu(2+i+1) + xnodu(2+i-1))/2.0d0
20 continue
call spline(nodeu,xnodu.ynodu)
do30i =1, nelu
adshpu(i,1,1) = xnodu(2+i-1)

adshpu(i,1,2) = ynodu(2+i-1)
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30

adshpu(i,2,1) = xnodu(2xi)

adshpu(i,2,2) = ynodu(2xi)

adshpu(i,3,1) = xnodu(2*i+1)

adshpu(i,3,2) = ynodu(2*i+1)

write(7,1001) adshpu(i,1,1),adshpu(i,1,2),adshpu(i,2,1),
)

& adshpu(i,2,2),adshpu(i,3,1),adshpu(i,3,2)

continue

generate the highlight circle

center of highlight circle

che = xtip - ytip

radius of highlight circle

radhe = dsqrt(2.0d0*ytip+ytip)

c..intercept of highlight circle with the x-axis

25

xhei = che + radhe

generating x coordinate nodal points on the center body

do 25 i = 1, nelcl

xnodc(2#i-1) = xfan + fracl(i)*(xcb - xfan)
xnodc(2#i+1) = xfan + fracl(i+1)#(xcb - xfan)
xnodc(2#i) = (xnodc(2*i+1) + xnodc(2+i-1))/2.0d0
write(6,+) 'xnodc(’,2#i+1,’)=", xnodc(2+i+1)

continue

generating x coordinate nodal points on the centerline

=0

do 31 i = nelcl + 1, nelc

N=1+1

xnodc(2#i-1) = xcb + frac2(ll)*(xhei - xcb)

xnodc(2*i+1) = xcb + frac2(ll+1)*(xhci - xcb)
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xnodc(2+i) = (xnodc(2+i+1) + xnodc(2xi-1))/2.0d0
write(6,+) "xnodc(’,2+i - 1,")=", xnodc(2xi- 1)
31  continue
call spline(nodec,xnodc,ynodc)
do 35i =1, nelc

adshpc(i,1,1) = xnodc(2+i-1)

)
adshpe(i,1,2) = ynodc(2+i-1)
adshpe(i,2,1) = xnodc(2+i)
adshpc(i,2,2) = ynodc(2#i)
adshpc(i,3,1) = xnodc(2+i+1)
adshpc(i,3,2) = ynodc(2¥i+1)

35 continue

c....co}mpute a new set of fractions for the nodal points on the lower
c...surface of the nacelle which have the same fractions as the
c..corresponding nodes on the ¢.b & centerline based on the entire length
dist = xtip - xfan
do 75 k = 1, nodec
fracti = (xnodc(k) - xfan)/(xhci - xfan)
xnodi(k) = xfan + fractisdist
75  continue
c do 76 k = nodecl + 1, nodec
c fracti(k) = frac2(k)*(xhci - xcb)/(xhci - xfan)
c xnodi(k) = xfan + fracti(k)*dist
c 76 continue
call spline(nodec,xnodi,ynodi)

do 851 = 1, nelc
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adshpi(i,1,1) = xnodi(2+i-1)
adshpi(i,1,2) = ynodi(2+i-1)
adshpi(i,2,1) = xnodi(2+i)
adshpi(i,2,2) = ynodi(2=i)
adshpi(i,3,1) = xnodi(2*i+1)

adshpi(i,3,2) = ynodi(2#i+1)
write(7,1001) adshpi(i,1,1),adshpi(i,1,2),adshpi(i,2,1),
& adshpi(i,2,2),adshpi(i,3,1),adshpi(i,3,2)
85  continue
do 334 i = 1, nelc
write(7,1001) adshp.c(i,l,1),adshpc(i,1,2),adshpc(i,2,1),
& adshpc(i,2,2),adshpc(i,3,1),adshpc(i,3,2)
334 continue
1001 format(6f10.4)
stop
end
T T PP E P PP PP PP PP PP PP PP PP
¢ to fit a curve through a set of points using cubic spline
¢ interpolation.
c**t*#t*t*****t*#t*t*#*****#**‘****t**#**********##*‘**t***#***t*#**##
subroutine spline(nnode,pt,spl)
implicit real+8 (a-h,o-z)
dimension x(100),f(100),b(100),ed(100),eu(100),el(100),dfp(100)
dimension pt(200), spl{200)
Coruennn read the data points from the data file
read(5,+) n
read(5,+) (x(i),f(i),i=1,n+1)
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70

R R R R R

dol10i=2,n

if(i.eq.2) go to 6

el(i-1) = x(i) - x(i-1)

ed(i-1) = 2.0d+00%(x(i+1) - x(i-1))

if(i.eq.n) goto 7

eu(i-1) = x(i+1) - x(i)

b(i-1) = 6.0d+00+(f(i+1) - £(i))/(x(i+1) - x(1))

+ 6.0d+004(f(i-1) - £(i))/(x(i) - x(i-1))

continue

nl=n-1

call tridag(nl,ed,eu,el,b)

write(6,+) 'the solution is’

write(6,¢) (b(i),i=1,n-1)

dfp(1) = 0.0d0

dfp(n+1) = 0.0d0

do70i=1,n-1

dfp(i+1) = b(i)

continue

do 75 k = 1, nnode

do8i=1,n
if(pt(k).gt-x(i).and.pt(k).lt.x(i+1))then

spl(k) = dfp(i) ((x(i+1)-pt(k))#»3)/(6.0d0* (x(i+1)-x(i)))
+ dfp(i+1)((pt(k)-x(i))**3)/(6.0d0* (x(i+1)-x(i}))
+ (f(3)/(x(i+1)-x(i))

- dfp(i)*(x(i+1)-x(i)) /6.0d0) x(x(i+1)-pt(k))

+ (Fa+1)/(x(i+1)-x()) - dfp(i+1)*(x(i+1)-x(i))/6.0d0)
+(pt(k)-x(i))
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else if(pt(k).eq.x(i)) then
spl(k) = f(i)
else if(pt(k).eq.x(i+1)) then
spl(k) = f(i+1)
else if(pt(k).gt.x(n+1)) then
spl(k) = 0.0d0
endif

80 continue

75  continue
write(6,*) 'the calculated value is’
write(6,*) (spl(k),k=1,nnode)
return
end

c
CRRBARE AR AR AR RRR R RR RNk Rk kR o ok

subroutine tridag(nl,ed,eu,el,b)
implicit reals8 (a-h,o-z)
dimension ed(100),eu(100),el(100),b(100)
m=nl-1
do 1040 i = 1)m
fa = el(i+1)/ed(i)
ed(i+1) = ed(i+1) - faseu(i)
b(i+1) = b{i+1) - fab(i)

1040 continue
b(nl) = b(nl)/ed(nl)
do 1070i = 1,m
b(nl-i) = (b(nl-i) - eu(nl-i)+b(nl-i+1))/ed(n1-i)
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1070

continue
return

end
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APPENDIX B

MATHEMATICAL NOTATIONS

¥ is a real valued function defined on the domain 2 which
is one-dimensional

¥ is a real valued function defined on the domain {1 which
is two-dimensional

¥ is a complex valued function defined on the domain 2 which
is two-dimensional

an interval between and including the values of 0 and r,
such that

for every

symbol representing union of two sets

Hilbert space; the space of functions which are square
integrable, which, in other words, implies that the
functions are continuous, but their derivatives

are piecewise continuous

125



10.

11.

12.

13.

14.

15.

BIBLIOGRAPHY

. Astley, R. J., and W. Eversman, “A Finite Element Method for Transmis-

sion in Non-uniform Ducts without Flow: Comparison with the Method of
Weighted Residuals”, Journal of Sound and Vibration, 57(3), pp. 367-388,
1978.

_ Eversman, W., R. J. Astley,and V. P. Thanh, “Transmission in Non-uniform

Ducts - A Comparative Evaluation of Finite Element and Weighted Residuals
Computational Schemes”, AIAA 77-1299.

Majjigi, R. K., R. K. Sigman, and B. T. Zinn, ” Wave Propagation in Ducts
using the Finite Element Method,” AIAA 79-0965.

Tag, 1., and E. Lumsdaine, “An Efficient Finite Element Technique for Sound
Propagation in Axisymmetric Hard Wall Ducts Carrying High Subsonic
Mach Number Flow,” AJAA 78-1154.

Baumeister, K. J., “Application of the Velocity Potential Function to Acous-
tic Duct Propagation and Radiation from Inlets using Finite Element The-
ory,” AIAA 79-0680.

Eversman, W., and R. J. Astley, “Acoustic Transmission in Non-Uniform
Ducts with Mean Flow. Part I: The Method of Weighted Residuals,” Journal
of Sound and Vibration, 74(1), pp. 89-101, 1981.

. Walkington, N.J., and W. Eversman, “Finite Difference Solutions to Shocked

Acoustic Waves,” AIAA 83-0671.

Walkington, N.J., “A Numerical Model for Subsonic Acoustic Choking”,
Ph.D. Dissertation, University of Missouri-Rolla, 1983.

Ville, J. M., and R. J. Silcox, “Experimental Investigation of the Radiation
of Sound from an Unflanged Duct and a Bellmouth, Including the Flow
Effect,” NASA Technical Paper 1697.

Silcox, R. J., “Experimental Investigation of Geometry and Flow Effects on
the Acoustic Radiation from Duct Inlets,” AJIAA 83-0713.

Kempton, A. J., and M. G. Smith, “Ray Theory Predictions of the Sound
Radiated from Realistic Engine Inlets,” AJAA 81-1987

Meyer, W. L., W. A. Bell, and B. T. Zinn, “Sound Radiation from Finite
Length Axisymmetric Ducts and Engine Inlets,” AIAA 79-0675.

Meyer, W. L., B. R. Daniel, and_ B. T. Zinn, “Acoustic Radiation from

Axisymmetric Ducts - A Comparison of Theory and Experiment,” AJAA
80-0097.

Horowitz, S. J., R. K. Sigman, and B. T. Zinn, “An Iterative Finite Element-
Integral Technique for Predicting Sound Radiation from Turbofan Inlets,”
AJAA 81-1987.

Horowitz, S. J., R. K. Sigman, and B. T. Zinn, “An Iterative Finite Element-
Integral Technique for Predicting Sound Radiation from Turbofan Inlets in
Steady Flight,” AJAA 82-0124.

126



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Baumeister, K. J., “Utilizing Numerical Techniques in Turbofan Inlet Acous-
tic Suppressor Design,” NASA TM 82994.

Astley, R. J., and W. Eversman, “Finite Element Formulations for Acoustical
Radiation,” Journal of Sound and Vibration, 88(1), pp. 47-64, 1983.

Bettess, P., “Infinite Elements,” ~ternational Journal for Numersical Meth-
ods in Engineering, Vol. 11 , pp. 53-64, 1977.

Astley, R. J., and W. Eversman, “Wave Envelope and Infinite Element
Schemes for Fan Noise Radiation from Turbofan Inlets,” AJAA 83-07009.

Astley, R. J., “Acoustical Radiation in Moving Flows: A Finite Element Ap-
proach,” Proceedings of the 1988 International Conference on Computational
Techniques and Applications, Sydney, Australia, 1983, pp. 685-698.

Eversman, W., A. V. Parrett, J. S. Preisser, and R. J. Silcox, “Contributions
to the Finite Element Solution of the Fan Noise Radiation Problem,” ASME
84-WA/NCA-1.

Irons, B. M., “A Frontal Solution Program for Finite Element Analysis,”
International Journal for Numerical Methods in Engineering, Vol. 2, pp.
5-32, 1970.

Preisser, J. S., R. J. Silcox, W. Eversman, and A. V. Parrett, “A Flight Study
of Tone Radiation Patterns Generated by Inlet Rods in a Small Turbofan
Engine,” ATAA 84-0499, 1984.

Parrett, A. V., and W. Eversman, “Wave Envelope and Finite Element Ap-
proximations for Turbofan Noise Radiation in Flight,” AJAA Journal, Vol.
24, No. 5, May 1986.

Lieblein, S., and, N. O. Stockman, “Compressibility Corrections for Internal
Flow Solutions,” Journal of Asreraft, Vol. 9, No. 4, pp. 312-313.

Astley, R. J., and W. Eversman, “Acoustic Transmission in Non-Uniform
Ducts With Mean Flow, Part II: The Finite Element Method,” Journal of
Sound and Vibration, 74(1), pp. 103-121.

Becker E., G. F. Carey, and J. T. Oden, “Finite Elements: An Introduction,”
Prentice-Hall, Inc., Englewood Cliffs, NJ, 1981.

127



ACOUSTIC RADIATION CODE
INSTALLATION NOTES

H. D. Meyer
United Technologies Corporation
Hamilton Standard Division
Windsor Locks, Connecticut

August 1992

Prepared for Lewis Research Center
Under Contract Number NAS3-25952

128



ACOQOUSTIC RADIATION CODE
INSTALLATION NOTES

INTRODUCTORY REMARKS

The Acoustic Radiation Code is a FORTRAN program used to study far field radiation from
turbofan engines. It was developed for the IBM (tm) mainframe at the University of Missouri-
Rolla, under the direction of Professor Walter Eversman. It has subsequently been modified at
Hamilton Standard to run on Sun (tm) and Silicon Graphics Iris (tm) UNIX (tm) workstations.

The program consists of five separate modules. These are run, one after the other, in the order
of their listing in the next section. However, PRATPREH, the first of these, may not always
be used.

The purpose of these notes is to assist users in the installation of the code on either of the two
above-mentioned workstations. In the pages that follow, there is a brief description of the
modules making up the program and then brief descriptions of how to compile, run, and test
these modules.

For further details, refer to Appendix A.

A TIC RADIATION CODE MOD
Five modules have been provided for installation:
PRATPREH
> Generates cards 3-5 of the PRATMESH.INP input to PRATMESHH G.e.,

the coordinates of the element nodes for the upper nacelle, center body and
lower nacelle)
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PRATMESHH

> Generates the finite element mesh used for both flow and acoustic solutions

> Calculates the duct eigenvalues and eigenfunctions used for acoustic
calculations

PRATFLOWH

»  Obtains the potential flow solutions

PRATVELH

»  Provides a superposition of the solutions above with a uniform mean flow
to give the final flow needed by PRATRADH

PRATRADH

»  Generates the acoustic solution for two-dimensional or cylindrically
symmetric nacelles

Note that the equivalent University of Missouri-Rolla IBM (tm) mainframe versions of these
modules are designated PRATPRE, PRATMESH, PRATFLOW, PRATVEL, and PRATRADA.
An "H" for Hamilton has been added to the names of the workstation versions (or in the case
of PRATRADA, the final "A" has been changed to "H"), to distinguish between the two
versions.

TO COMPILE
PRATPREH
f77 -o pratpreh -O pratpreh.f (Sun)
f77 -o pratpreh -O -old_rl pratpreh.f (SGI)
PRATMESHH
77 -o pratmeshh -O pratmeshh.f (Sun)
£77 -o pratmeshh -O -old_rl pratmeshh.f (SGI)
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PRATFLOWH

f77 -o pratflowh -O pratflowh.f (Sun)

f77 -o pratflowh -O -old_rl pratflowh.f (SGI)
PRATVELH

f77 -o pratvelh -O pratvelh.f (Sun)

f77 -o pratvelh -O -old_rl pratvelh.f (SGI)
PRATRADH

f77 -o pratradh -O pratradh. f (Sun)

f77 -o pratradh -O -Olimit 1100 -old_rl pratradh.f (SGI)

TO RUN

PRATPREH

(pratpreh < pratpre.inp > pratpre.out) > & pratpre.err &
(fort.5) (fort. 6) (stderr)

Files Generated:
* fort.7 - Cards 3-5 for pratmesh.inp (3.3 Kb)
* pratpre.out - Numeric output data (9 Kb)
* pratpre.err - System error messages

PRATMESHH
(pratmeshh < pratmesh.inp > pratmesh.out) > & pratmesh.err &

(fort.5) (fort.6) (stderr)

Files Generated;
* fort. 14 - PostScript plot file (450 Kb)
* fort.20 - Needed as input by all other modules (732 Kb)
* pratmesh.out - Numeric output data (360 Kb)
* pratmesh.err - System error messages
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PRATFLOWH

(pratflowh < pratflow.inp > pratflow.out) > & pratflow.err &
(fort.5) (fort.6) (stderr)

Note: fort.20, generated by PRATMESHH, must be
available as UNIT=20 input.

Files Generated:

* fort.2-4, 8 - Work files; delete (6.5 Mb total)
& 5 tmp files  the fort.2-4, 8 ones
at end of run

* fort.14 - PostScript plot file (1.6 Mb)
* fort.21 - Needed as input by PRATVELH (195 Kb)
* pratflow.out - Numeric output data (196 Kb)
* pratflow.err - System €rTor messages

PRATVELH

(pratvelh < pratvel.inp > pratvel.out) > & pratvel.err &
(fort.5) (fort.6) (stderr)

Note; fort.20, generated by PRATMESHH, and fort.21,
generated by PRATFLOWH, must be available,
respectively, as UNIT=20 and UNIT=21 input.

Files Generated:
* 4 tmp files - Work files (443 Kb total)
* fort.14 - PostScript plot file (513 Kb)
* fort.22 - Needed as input by PRATRADH (700 Kb)
* pratvel.out - Numeric output data (13 Kb)
* pratvel.err - System error messages
PRATRADH

(pratradh < pratrad.inp > pratrad.out) >& pratrad.err &
(fort.5) (fort.6) (stderr)

Note: fort.20, generated by PRATMESHH, and fort.22,
generated by PRATVELH, must be available,
respectively, as UNIT=20 and UNIT =22 input.
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Files Generated:

* fort.3, 4 & - Work files; delete the (70 Mb total)
5 tmp files fort 3, 4 ones at end of run
* fort. 14 - PostScript plot file (1 Mb per case)

* fort.23 (and - Used previously for additional plotting; (15 Kb per case)
fort.24-27, not needed for the present
setup, so can be deleted
one for each
additional case

that is run)
* pratrad.out - Numeric output data (107 Kb per case)
* pratrad.err - System error messages

Note that the plot files, fort. 14, are easily plotted using a standard PostScript printer. They also
can be previewed on a monitor if a PostScript viewing utility is available.
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TEST CASE

A test case has been provided to check each of the five Acoustic Radiation Code modules. For
test purposes, PRATPREH can be run independently. However, the other programs should be
run in sequence with the output (i.e., fort.20, fort.21, fort.22) of one feeding into the next. The
test input files to use have the same names as those used in the "To Run” instructions above
(i.e., pratpre.inp, pratmesh.inp, pratflow.inp, pratvel.inp, pratrad.inp).

Output data (fort.7) from the PRATPRE test run should be as follows:

0.0000 1.2000
0.0450 1.2000
0.0900 1.2000
0.1350 1.2000
0.1800 1.2000

.0225 1.2000 0.0450 1.2000
.067% 1.2000 0.0900 1.2000
L1125 1.2000 0.1350 1.2000
L1575 1.2000 0.1800 1.2000
L2025 1.2000 0.2250 1.2000

ccooo

0.2250 1.2000 0.2475 1.2000 0©0.2700 1.2000
0.2700 1.2000 0.2925 1,2000 0.3150 1.2000
0.3150 1.2000 0.3375 1.2000 0.3600 1.2000
0.3600 1.2000 0.3825 1.2000 0.4050 11,2000
0.4050 1.2000 0.427S 1.2000 0.45S00 1.2000
0.4500 1.2000 0.4725 1.2000 0.4950 1.2000
0.4950 1.2000 0.5175 1.2000 0.5400 1.2000
0.5400 1.2000 0.5625 1.2000 0.5850 1.2000
0.5850 1.2000 0.6075 1.1999 0.6300 1.1595
0.6300 1.1995 0.6525 1.1985 0.6750 1.1968
6.6750 1.1968 0.6975 1.1946 0.7200 1.1917
0.7200 1.1917 0.742S 1.1880 0.7650 1.1835
0.7650 1.1835 0.7875 1.1781 0.8l00 1.171¢
0.8100 1.1714 0.8325 1.1632° 0.8550 1.1527
0.8550 1.1527 0.8662 1.1460 0.8775 1.1381
0.8775 1.1381 0.8887 1.126% 0.5000 1.1000
.0000 1.0000 0.0207 1.0000 0.041S 1.0000
.0415 1.0000 0.0622 1.0000 0.0830 1.0000
L0830 1.0000 0.1037 1.0000 0.1245 1.0000
L1245 1.0000 0.1452 1.0000 0.1660 1.0000
L1660 1.0000 0.1867 1.0000 ©.2075 1.0000
L2075 1.0000 0.2282 1.0000 0.24850 1.0000
L2490 1.0000 0.2697 1.0000 0.290S 1.0000
02505 1.0000 0.3112 1.0000 0.3319 1.0000
03319 1.0000 0.3518 1.0000 0.3717 1.0000
L3717 1.0000 0.3916 11,0000 0.4115 1.0000
L4215 1.0000 0.4314 1.0000 0.4512 1.0000
L4512 1.0000 ©0.4711 1.0000 0.4910 1.0000
L4910 1.0000 0.5109 1.0000 0.5308 1.0000
.5308 1.0000 0.5506 1.0000 0.5705 1.0000
.5705 1.0000 0.5904 1.0000 0.6103 1.0001
L6103 1.0001 0.6302 1.0006 0.6501 1.0014
L6501 1.0014 0.6699 1.0027 0.6898 1.0046
.6898 1.0045 0.7097 1.0069 0.7296¢ 1.0098
L7296 1.0098 0.7495 1.0133 0.7693 1.017S
L7693 1.0175 0.7892 1.0224 0.8091 1.0283
.8091 1.0283 0.8290 1.03S4 0.8489 1.0441
.8489 1.0441 0.8588 11,0495 0.8688 1.0556
0.8844 1.0685 0.9000 1.1000

L0000 0.3000
L0625 0.2818
L1250 0.2601
L1875 0.2328
L2500 0.200)
L3125 0.1619
L3750 .0.1166
L4375 0.0635
.5000 0.0000
.5599 0.0000
.6198 0.0000
.6797 0.0000
L7396 0.0000
L7995 0.0000
.85%4 0.0000
.9193 0.0000
.9792 0.0000
L0390 0.0000
.0989 0.0000
.1588 0.0000

L0312 0.2911 0.0625 0.2818
.0938 0.2716 0.31250 0.2601
L1562 0.2471 0.1875 10,2328
.2188 0.2172 0.2500 0©.2003
L2812 0.1819 0.3125 0.1619
L3438 0.1402 ©0.3750 0.1166
.4062 0.0911 0.42375 0.0635
.4688 0.0332 0.5000 0.0000
.5299 0.0000 0.55%% 0.0000
.5898 0.0000 0.6198 0.0000 .
L6497 0.0000 0.67%7 0.0000
.7096 0.0000 ©0.73%6 0.0000
L7695 0.0000 0.7995 0.0000

0

¢

0

1

1

1

1

1

1

cooo

.8294 0.0000 L8594 0.0000
.8833 0.0000 L9193 0.0000
L9492 0.0000 L9792 0.0000
L0091 0.0000 .0390 0.0000
L0690 0.0000 .0989 ¢.0000
.1289 0.0000 .1588 0.0000
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Output plots from runs of the remaining modules should match those shown below. Note that
plots here are reduced in size. The actual ones will be 84" x 11",
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PRATVELH
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PRATRADH
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PRESSURE DIRECTIVITY
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ACOUSTIC PRESSURE
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